
Administrator
Note
Marked set by Administrator

Introductio n to Digital S ignal Processing and Digit al Filtering

 1.1 Introduction

Digital signal processing (DSP) refers to anything that can be done to a
signal using code on a computer or DSP chip. To reduce certain
sinusoidal frequency components in a signal in amplitude, digital filtering
is done. One may want to obtain the integral of a signal. If the signal
comes from a tachometer, the integral gives the position. If the signal is
noisy, then filtering the signal to reduce the amplitudes of the noise
frequencies improves signal quality. For example, noise may occur from
wind or rain at an outdoor music presentation. Filtering out sinusoidal
components of the signal that occur at frequencies that cannot be
produced by the music itself results in recording the music with little wind
and rain noise. Sometimes the signal is corrupted not by noise, but by
other signal frequencies that are of no present interest. If the signal is an
electronic measurement of a brain wave obtained by using probes applied
externally to the head, other electronic signals are picked up by the
probes, but the physician may be interested only in signals occurring at a
particular frequency. By using digital filtering, the signals of interest only
can be presented to the physician.

 1.2 Historical Perspective

Originally signal processing was done only on analog or continuous time
signals using analog signal processing (ASP). Until the late 1950s digital

Introduction to Digital Signal
Processing and Digital Filtering

 c h a p t e r 1

1

computers were not commercially available. When they did become
commercially available they were large and expensive, and they were used
to simulate the performance of analog signal processing to judge its
effectiveness. These simulations, however, led to digital processor code
that simulated or performed nearly the same task on samples of the
signals that the analog systems did on the signal. After a while it was
realized that the simulation coding of the analog system was actually a
DSP system that worked on samples of the input and output at discrete
time intervals.

But to implement signal processing digitally instead of using analog
systems was still out of the question. The first problem was that an analog
input signal had to be represented as a sequence of samples of the signal,
which were then converted to the computer’s numerical representation.
The same process would have to be applied in reverse to the output of
the digitally processed signal. The second problem was that because the
processing was done on very large, slow, and expensive computers,
practical real-time processing between samples of the signal was impossi-
ble. Finally, as we will see in Chapter 9, even if digital processing could
be done quickly enough between input samples in order to adequately
represent the input signal, high sample rates require more bits of
precision than slower ones.

The development of faster, cheaper, and smaller input signal samplers
(ADCs) and output converters from digital data to analog data (DACs)
began to make real-time DSP practical. Also, the processors were
becoming smaller, faster, and cheaper and used more bits. Real-time
replacements for analog systems may be just as small, cheap, and accurate
and be able to process at a sample rate adequate for many analog signals.

However, testing and modification of the coding for DSP systems led to
DSP systems that have no analog signal processing equivalents, yet
sometimes perform the signal processing better than the DSP coding
developed to replace analog systems. For digital filtering, these processing
methods are discussed in Chapters 10 and 11.

 1.3 Simple Examples of Digital Signal Processing

Digital signal processing entails anything that can be done to a signal
using coding on a computer or DSP chip. This includes digital filtering

2

Digital Signal Processing

of signals as well as digital integration and digital correlation of signals.
This text concentrates on constant rate digital filtering, with references
to where the material is applicable to DSP in general. At the end of the
text the techniques developed for digital filtering will be used for the DSP
task of integration to show how the concepts and techniques are not
limited to digital filtering.

The concepts are very simple. A signal is sampled in time at a constant rate
in order to input its magnitude value at periodic intervals into the com-
puter. The sample value of the analog magnitude is converted into a binary
number. The sampling and conversion are done with an analog to digital
converter (ADC). Now the computer code can work on the signal. The
computer code computes an output value, which is converted to an analog
magnitude from a binary number and then held constant until a new out-
put is computed to replace it. This is done by a digital to analog converter
(DAC). The basic DSP system described here is shown in Figure 1.1.

To illustrate the concept of DSP and to see where more study and analysis
are needed, let’s look at a few simple things that can be done to a sampled
signal. If a signal is sampled every T seconds by an ADC and in the
computer the sample value is just multiplied by a constant and then sent
to the DAC, you have a digital amplifier. The gain of the amplifier is equal
to the coded value of the constant. The following equation describes this
digital amplifier, where x is the current input sample value from the ADC
and y is the corresponding computer output to the DAC.

y = ax A simple digital amplifier

If the sampled value of the input signal is multiplied by T , you have
computed an approximation to the area under the signal between
samples, as long as the signal doesn’t change too much between samples.
If this value is added to the previous input sample multiplied by T , you

3

sampler analog/bin
computer

coding

bin/analog hold

ADC DAC

x(t)
x y

y(t)

Figure 1.1. Basic DSP system

Introduction to Digital Signal Processing and Digital Filtering

have approximated the area under the signal over two sample times. This
could be repeated endlessly to approximate the area under the signal
from when sampling started, as shown in Figure 1.2. The area under a
signal or function is its integral. Thus you have performed very simple
digital integration using the current sample of the input multiplied by T
and then adding the result to the previous output. This process is
described by the following equations after two input samples (the –1
subscripts indicate they are previous input or output values).

y–1 = T x–1 Simple digital integration after one input sample
(the previous sample)

y = y–1 + T x Simple digital integration after two input samples
(the current sample)

By using looping, such as a “While” or “For” loop, the preceding
equations could be repeated endlessly by looping about one equation.

If the current input sample value is multiplied by one-half and added to
half the previous sample value of the input, a current change in the input
signal is reduced, while if the signal is changing slowly the output is very
close to the input, since it is just the sum of two half values. Thus the
computer is doing a very simple lowpass filtering of the input signal. This
simple process is represented by the following equation. The result of
using this equation on a string of input samples from the ADC is the input
to the DAC shown in Table 1.1. As can be seen, the results, y, are
smoothed or lowpass filtered versions of x, the ADC output.

y = 0.5x + 0.5x–1 Simple digital lowpass filtering

4

x(t)

t
T 2T 3T

area under dashed boxes approximates
area under x(t) after 2 samples at t = 0 and t = T

x(0)

x(T)

x(2T)

Figure 1.2. Example of digital integration

Digital Signal Processing

 1.4 The Common DSP Equation

The simple DSP examples just discussed were carried out using some
input sample values stored in the computer or received currently from
the ADC, multiplying them by appropriate constants, and summing the
results. Sometimes the previous output values are multiplied by appropri-
ate constants and also added to the first sum to give a new output, as was
done in the digital integration example. Almost all digital signal process-
ing by a computer involves adding the signal input sample just obtained,
multiplied by a constant, to the sum of a few previous input samples, each
multiplied by their corresponding constants, and sometimes adding all of
this to a few previous outputs, each multiplied by their constants, to obtain
a new output. This leads to the common equation used for almost all DSP:

y = (b−1y−1 + ⋅ ⋅ ⋅ + b−my−m) + (ax + a −1x −1 + ⋅ ⋅ ⋅ + a −nx −n) (Equation 1.1)

In Equation 1.1, the xs are the sampled input values, the ys are the output
samples going to a DAC. The subscripts indicate how many previous
sample periods ago are referred to. The as and bs are just constants stored
in the computer or DSP chip. A flowchart showing how Equation 1.1
might be implemented by code in the computer shown in Figure 1.1 is
given in Figure 1.3.

It may seem strange that almost all DSP tasks are carried out by solving
the preceding equation each time a new value of x is input from the ADC,
but you must remember that all a computer can do mathematically is add,
subtract, multiply, and divide; which is just what this equation requires. If
you choose any values for any of the a and b constants and repeat the
equation for every new input sample from an ADC, you will be doing DSP!
But what DSP have you done and how well? The answers to these
questions and more will be given in the rest of this text.

5

Table 1.1
Example of digital filtering (smoothing)

ADC sample time 0 T 2T 3T 4T

ADC output x 1.2 0.7 1.4 1.1 0.6

DAC input y xxxxxx 0.95 1.05 1.25 0.85

Introduction to Digital Signal Processing and Digital Filtering

 1.5 What the DSP Equation Shows

The common DSP equation will be used to show that many DSP questions
need further study if one is to understand digital signal processing and
do analysis or design of a DSP system. These questions include the
following:

◗ How do you choose the a and b coefficients to perform a spe-
cific DSP task, such as doing second-order lowpass Butterworth
filtering?

◗ How many coefficients are needed, and what is the effect of
using fewer than required?

◗ Are the b coefficients always needed, and what is the effect if
they are not used?

6

initialize X1, X2,
etc. to 0

wait till ADC returns
new sample X

Y = 1.565*Y1 − 0.6438*Y2

+ 0.019977X + 0.0395X1

+ 0.01977X2

Y2 = Y1
Y1 = Y
X2 = X1
X1 = X

send Y to DAC

X1, X2, ... are names for x

X is name for x

Y is name for y, Y1 is name for
y , etc.

This is the coded DSP equation

etc.

Saving previous values, only 2
shown here

−1, x −2,

−1

Figure 1.3. Flowchart using the common DSP equation

Digital Signal Processing

◗ The a and b coefficients are represented as binary numbers in
the computer; how many bits should be used to meet the filter
specifications?

◗ The x values are sample values of the input signal; how often
should the signal be sampled?

◗ What is the effect of different sample rates, and does the filter
coding need to be changed if the sample rate changes?

◗ How many bits should be used in the ADC and DAC to obtain a
specific precision?

The answers to these questions and how they are obtained are subjects of
the following chapters of this text. In order to fully make use of this text,
the student should have a background in college algebra, trigonometry,
first-semester calculus, analog filtering, and AC circuits. The only required
background is in algebra and analog filtering; the others will increase the
speed of learning and give a deeper understanding of the subject.

7

Introduction to Digital Signal Processing and Digital Filtering

Effect o f Signal Samp ling

 Introduction

In this chapter we examine the effects of sampling on signals and DSP
systems. All DSP input signals are sampled, usually at equal intervals of
time, in order to input numbers representative of the signal into a
computer or DSP chip. We need to determine the effect of this sampling
on the signal, as it produces unexpected and critical side effects; these
need to be understood before effective filter design can be carried out.
In order to simplify the demonstration of the effects of sampling, we will
use an analog input signal composed of a single cosine wave. This signal
will illustrate and quantitatively show the effects of sampling an analog
signal by means of the ADC.

 2.1 Periodic Sampling of a Cosine Signal

All signals worked on by DSP systems must be sampled at discrete values
of time in order to be input into a DSP chip or computer. This sampling
and its conversion to binary values is done by the ADC. This periodic
sampling creates very special signal and DSP system characteristics. These
characteristics are used in the specification and design of digital filters
and DSP systems. In order to see and analyze these characteristics, we will
look at the effects of periodic sampling on a cosine signal at different
frequencies. We will often refer to signals at, above, or below a certain
frequency, rather than to sinusoids with frequencies at, above, or below

Effect of Signal Sampling

 c h a p t e r 2

9

those of sinusoids at a certain frequency. This shorthand English is used
almost universally in industry and the literature. As an example, “reduc-
ing the frequencies above 100 rad/s” means to reduce the amplitudes of
all sinusoids with frequencies above 100 rad/s.

If the signal into an ADC is a cosine wave at the radian frequency of w
rad/s, its equation is given by Equation 2.1.

x(t) = cos(wt) (Equation 2.1)

The continuous time variable is t , and A is the peak value. If the signal is
sampled every T seconds, its value at the sample times is given by
Equation 2.2, where n is an integer.

x(nT) = cos(wnT) (Equation 2.2)

This sampling process is illustrated in Figure 2.1, where T = 0.1 and w is
2π rad/s. Column 2 of Table 2.1 gives nT , which is the sample time for
every integer n, since the samples occur at t = 0, T , 2T, . . . only. A few
sample values are computed in column 3 and can easily be checked using
a calculator. All that has been done is to substitute nT for t, as shown in
Equation 2.2. This is a valid way to get the equation of any signal after
sampling, not just that of the cosine signal used here. For example, the
following equations are the input and sampled output signals of an ADC
for a decaying sinusoidal signal.

x(t) = Ae–3tcos(7t)

x(n) = x(nT) = Ae–3nT cos(7nT)

10

Figure 2.1. ADC samples at nT = n(0.1) for slow cosine input

Digital Signal Processing

Notice that for notational convenience the sampled signal argument
is usually written without the sample period T , but T or its value is
never left out of the sampled signal equation (or it would be a
different equation).

 2.2 Periodicity of Any DSP System Frequency Response

Let’s look at the values of the sampled sinusoid when its frequency w is
increased by the sampling frequency ws, as shown in the following
equation.

x1(t) = cos[(w +ws)t] (Equation 2.3)

The sampling frequency in Hz is 1/T and in rad/s is 2π/T , so Equation
2.3 gives

x1(n) = cos[(w+2π/T)nT]

= cos(wnT + 2nπ)

= cos(wnT)

11

Table 2.1
Showing the effects of sampling the signals x(t), x1(t), and x2(t)

Effect of Signal Sampling

Notice that after sampling, the signal in Equation 2.3 looks just like the
original sampled signal in Equation 2.2. You can see that the sampled values
of Equation 2.3 shown in column 4 of Table 2.1 are the same as the values
in column 3. The preceding equations make use of the fact that the sine or
cosine of an angle offset by 2π is not changed. You can easily see that any
angles offset by multiples of 2π are the same by turning around 2π radians
in a room and finding that you are facing in the original direction again.

If the cosine signal frequency is increased by integer multiples of the
sampling frequency, its sampled values out of the ADC are indistinguish-
able from the corresponding values of the samples of the unshifted cosine
input to the ADC. This is true even if the original frequency is decreased
by multiples of the sampling frequency such that a negative argument for
the sampled cosine is obtained, since cos(–a) is cos(a), from trigonome-
try. This is also apparent to all students in electronics , since on a scope
the only difference between a cosine signal and a negative cosine signal
on an oscilloscope is when the trace starts.

Why was it useful to point out that two different cosine signals into an
ADC have the same sample values out of the ADC if they differ in
frequency by the sampling frequency of 2π/T rad/s? The reason is that
all signals worked on by a DSP system are represented in a computer as
outputs from an ADC. If two signals have the same values out of the ADC,
then any DSP system will do exactly the same thing to both signals. One
example is a lowpass digital filter. The purpose of a lowpass filter is to
reduce the amplitude of sinusoidal signals above a specified frequency,
while not reducing the amplitude below a specified frequency. From the
preceding discussion, we know that above a certain frequency the digital
lowpass filter will start acting like a highpass filter because a high
frequency sinusoidal will have the same sample values as a lower
frequency sinusoidal signal. This important fact will be used in Chapter
3 in drawing graphical digital filter specifications.

The preceding equations show that all ADC outputs look alike if
separated by 2π/T radians per second. There is no way around this.
Whatever a digital filter does, its characteristics repeat themselves every
2π/T radians per second, because after going through an ADC the inputs
look the same, as Table 2.1 shows. The math is just an explicit way to show
this, but it can be seen in Figure 2.2, where the same sinusoid shown in
Figure 2.1 is sampled at the original rate after its frequency is increased
by 2π/T radians per second. The cosine wave is shown by dashed lines,

12

Digital Signal Processing

and the sample values by boxes. If you want to filter an analog signal, you
must sample at a high enough rate or eliminate the high frequency
content of the signal first.

We have shown that a cosine signal increased in frequency by the ADC
sampling rate has the same sample values as if its frequency were not
increased. Next it will be shown that its sample values will be the same at
an even lower increased frequency. As stated earlier, from trigonometry
we have cos(a) = cos(–a). Again using the property that any trigonometric
function is identical if its angle is changed by 2π radians, we will show that
the signal x2(t) in Equation 2.4 has the same value out of the ADC as the
original signal x(t).

x2(t) = cos[(–w + ws)t] (Equation 2.4)

This cosine signal x2(t) is just the original signal x(t) with its frequency
at the sample frequency minus the original signal’s frequency. When
samples of x2(t) are taken every T seconds by the ADC, the equation for
the sample values is derived as in the following set of equations.

x2(n) = cos[(–w + 2π/T)nT]

= cos(–wnT + 2πn)

= cos(–wnT)

= cos(wnT)

13

Figure 2.2. ADC samples at nT = n(0.1) for fast cosine input

Effect of Signal Sampling

Again it is seen that at a higher frequency even less than the sample
frequency the sampled values out of an ADC and into a computer look
identical to those at a lower frequency. This can be verified by computing
the values in column 5 of Table 2.1 at the sample times on a calculator,
using Equation 2.4 with T = 0.1 and w = 2π rad/s. This new higher
frequency is not the original increased by the sampling frequency, but the
original frequency subtracted from the sample frequency. This result is
true for all integer multiples of the sample frequency.

Thus, using the simple algebraic substitution of nT for t to obtain the
value of a cosine signal at the sample times separated by T seconds, we
have seen that all DSP systems must do the same thing to sinusoids of
frequency w as they do to sinusoids at frequencies w above and below the
sample frequency, since their sample values into the computer are the
same. This is shown in Figure 2.3, where a cosine of amplitude A is plotted
at w, ws + w, and ws –w. Remember that ws is just the sampling frequency
in rad/s. This significant result must be taken into account when
designing a DSP system. If the DSP system is the previously mentioned
lowpass filter, its filtering characteristics repeat, as shown in Figure 2.4.
When specifying the frequency characteristics of a DSP system such as a
digital filter, you must be aware that they will repeat above half the sample
rate at π/T in rad/s, as seen in Figure 2.4, and this repetition is periodic.

14

amplitude of DSP output

frequency
rad/swww w2 w1s

2
s

A

Figure 2.3. Equivalence of DSP output for sinusoids at w, w1, w2

Digital Signal Processing

 2.3 Aliasing and Nyquist Limit

The condition where the highest input signal frequency content is equal
to half the sample rate is called the Nyquist limit, and it leads to the
Nyquist criterion. The Nyquist criterion is not violated if the sampling rate
is more than twice as high as the highest frequency of the sinusoids in the
signal, that is, if the highest input signal frequency content is less than
the Nyquist limit. This is shown in Figure 2.4. The figure is drawn for an
arbitrary input signal frequency spectrum; the signal might be composed
of only one cosine wave or many cosine or sine waves.

In Figure 2.4 the Nyquist criterion is not violated, but it can be seen that
if the sampling frequency is not greater than twice the highest frequency
of any sinusoid in the signal, frequency components in the original signal
would look like lower frequency signal components. Figure 2.5 shows the
same signal spectrum sampled at a lower rate, so that the Nyquist limit is
violated. The DSP system not only treats sinusoids above the Nyquist limit
as if they were lower frequency sinusoids, but actually includes them with
the actual lower frequency sinusoids. It is important to be aware of this
double whammy. The DSP system not only has a periodic frequency
spectrum for its output signal, but it also modifies the spectrum you have
tried to design by including higher frequency sinusoids for processing as
if they were the corresponding lower frequency sinusoids. There is no way
to undo this effect of a DSP system. You must either be aware of the
damage and accept the consequences, avoid violating the Nyquist crite-
rion by sampling faster, or eliminate frequency components in the signal
above the Nyquist limit.

15

filter
output
gain

frequency
rad/swws

2
s

lowpass

Figure 2.4 Lowpass digital filter magnitude spectrum

Effect of Signal Sampling

 2.4 Anti-aliasing Filters

Because the frequency content of most signals is unknown to some
degree, especially when noise is considered, most DSP systems use a
lowpass analog filter called an anti-aliasing filter in front of the ADC. This
filter must be an analog filter, since it is in front of the ADC. If it were
after the ADC it would itself be a digital filter, with the same problems
you want to eliminate from the original DSP system! Figure 2.6 shows a
typical DSP system using an anti-aliasing filter.

The specifications on the anti-aliasing filter depend on the input signal
sinusoidal frequency content and the proposed sampling rate specified
by the sample period T . As mentioned earlier, it must be an analog
lowpass filter. It seems strange that almost all DSP systems and especially
digital filters include an analog filter. However, this is usually a very simple
lowpass filter to build. All it needs to do is to reduce the amplitudes of
sinusoids in the signal into the ADC below an acceptable level above a
frequency at which they look like significant lower frequency sinusoids.

16

lowpass
filter
output
gain

frequency
rad/swsws

2
Figure 2.5. Lowpass digital filter showing Nyquist violated

anti-aliasing
filter

LPF

sampler

computer

coding

analog/bin

x(t) y(t)
yx

ADC

hold

bin/analog

DAC

Figure 2.6. DSP system with anti-aliasing filter

Digital Signal Processing

Figure 2.7 shows this process for a digital lowpass filter, with the much less
stringent anti-aliasing lowpass analog filter response shown in dashed
lines.

Example 2.1. Determining the requirements for an anti-aliasing
filter

Problem: Assume that a digital lowpass filter is to be designed to pass all
frequencies below 100 rad/s and reduce all frequencies above 500 rad/s
by 32. Let’s assume the sample period is 0.001 s. An anti-aliasing filter
must be designed for this digital filter.

Solution: The sample rate in rad/s is 2000π. From Figure 2.7 it can be seen
that frequencies above 2000π minus 100 rad/s must be reduced by 32 (by
the anti-aliasing filter) or else the digital filter will pass them as if they
were the corresponding low frequency signals in the passband.

The requirements on the anti-aliasing filter are seen to be that it reduces
the amplitude of the signal into the ADC by 32 or more above 5783 rad/s
while not significantly reducing the frequencies below 100 rad/s. From
an analog filtering course, it can be learned that this is easily achieved by
a first-order lowpass analog filter. A first-order filter reduces the signal by
2 every time the frequency doubles beyond the corner frequency. If the
corner frequency is set at 100 rad/s, by the time the frequency is 3200
rad/s (which is five doublings of the corner frequency), the analog signal
is reduced by 32. This first-order lowpass filter could even be a simple
two-component RC filter.

17

filter
output

lowpass

gain

frequency
rad/swws

2
s

Figure 2.7 Lowpass digital filter and anti-aliasing filter

Effect of Signal Sampling

 2.5 The Nyquist Limit and DSP Output Periodicity by
Mathematical Means

Most DSP texts and most engineers have been trained to think of aliasing
and the Nyquist criterion in terms of the frequency of a sampled signal.
A simple derivation is given in the following discussion; most other
derivations are much more complex. It is not necessary to determine the
magnitude spectrum of a sampled signal, since we have determined
aliasing and the Nyquist criterion without it. Inside the computer or DSP
chip, there are just a bunch of numbers being manipulated, not a signal
with a sampled analog spectrum. But to illustrate the other approach, the
following derivation is given, using knowledge from first-semester calculus
and Laplace transform theory. The output of an ADC is a sampled signal
and we will show that this leads to it having a periodic spectrum with a
period of 1/T Hz or 2π/T rad/s. Again, as can be seen in Figure 2.4 and
Figure 2.5, this leads to the Nyquist criterion on the sampling rate.

We will use the delta or impulse function δ(t) used in analog signal
processing class, a very narrow and tall signal with area (or strength) = 1
at t = 0 and zero value anywhere else. Then δ(t – T) is just a spike of
strength 1 at t = T and zero everywhere else. The sum of δ(t) and δ(t – T)
is just spikes of strength 1 at t = 0 and another at t = T . Using this
approach, the output of an ADC is given by the following equations.

x(nT) = x(n) = x(0)δ(t) + x(T)δ(t − T) + x(2T)δ(t − 2T) + . . .

x(n) = ∑
n=0

∞

x(nT)δ(t − nT) = x(t)∑
n=0

∞

δ(t − nT)

Now it can be seen that ∑
n=0

∞

δ(t − nT) is periodic (plot it), so it has a Fourier

series, as given by the following equation.

∑
n=0

∞

δ(t − nT) = a0 + ∑
k=1

∞

ak cos(kωst) + ∑
k=1

∞

bk sin(kωst), where ωs = 2π/T

The coefficients for the preceding Fourier series are computed as follows,
using the standard formulas for computing Fourier series coefficients.

18

Digital Signal Processing

a0 =
1
T

 ∫
−T / 2

T / 2

∑
n=0

∞

δ(t − nT)dt = 1/T

ak =
2
T

 ∫
−T / 2

T / 2

∑
n=0

∞

δ(t − nT) cos(kωst)dt =
2
T

bk =
2
T

 ∫
−T / 2

T / 2

∑
n=0

∞

δ(t − nT) sin(kωst)dt = 0

Using the preceding coefficients in the Fourier series equation, we can
write the equation for the sum of the impulses in the following form.

∑
n=0

∞

δ(t − nT) =
1
T

 +
2
T

 ∑
k=1

∞

cos(kωst)

Using this in the equation for x(nT) = x(n), as a discrete-time signal, gives
the following equation.

x(n) = x(t)[1
T

 +
2
T

 ∑
k=1

∞

cos(kωst)]

Now let x(t) be any sinusoid of amplitude A at frequency w. Then the
preceding equation for x(n) can be written in the following form.

x(n) = x(nT) = A cos(ωt)[1
T

 +
2
T

 ∑
k=1

∞

cos(kωst)]

Using the trigonometric identity for the product of cosines, we finally
have the result we need in the following equation.

x(n) = x(nT) =
A
T

 cos(ωt) +
2 A
T

 ∑
k=1

∞

[0.5 cos(ω − kωs)t + 0.5 cos(ω + kωs)t]

From the preceding equation it is obvious that the sampled signal
frequency response as a discrete time signal is periodic and symmetric

19

Effect of Signal Sampling

every ws rad/s or 1/T Hz and looks like Figure 2.3 for any w, where w1
is w + ws and w2 is –w + ws.

 Summary

In this chapter the effect of periodic sampling of an analog signal is shown
to generate two important characteristics. These characteristics were
developed by using a test signal composed of only a cosine wave, but any
signal can be considered to be composed of a sum of sinusoids like the
cosine wave. This is known from Fourier analysis and is also obvious to
students of filtering, since otherwise there would be no need to design
filters to amplify or reduce certain frequencies.

The first important effect of sampling is that any sinusoid that is sampled
has the same sample values as a sinusoid offset in frequency by the
original signal frequency above and below the sample frequency. Thus
the output of any DSP system must be periodic about the sample
frequency, and also any multiple of the sample frequency. This is due to
the fact that if the sample values are the same when input into the DSP
chip or computer, it will do the same thing to them.

The other effect of sampling an analog signal is a result of the repetition
of the DSP frequency characteristics just discussed and leads to the
Nyquist criterion. If a higher frequency sinusoid is treated in the DSP
system the same as a lower frequency sinusoid, then the DSP system
output will be the result of both sinusoids, but it should be the result of
only one. To avoid this effect, the maximum frequency of a sinusoid
should be less than half the sampling frequency, which is called the
Nyquist limit. If the input signal has frequencies above this limit, it is said
that the Nyquist criterion is violated. If this is the case, then an analog
anti-aliasing filter is used to eliminate the higher frequency sinusoids that
look like lower frequency sinusoids after sampling, so that the Nyquist
criterion is not violated. This anti-aliasing filter is a simple lowpass analog
filter.

In developing the effects of sampling a signal into an ADC, we showed
that the analog signal in could easily be modified to give the equation of
the ADC output signal. All that needs to be done is to replace the time
variable t by nT . Also, the T in nT is dropped when it is in the argument

20

Digital Signal Processing

of a signal for notational convenience, but it is never dropped in any other
place.

 Self-Test

1. Change the equations for the following signals to describe the signals
after they go through an ADC with a sample period of T seconds.

(a) x(t) = e–3t

(b) x(t) = 5t2

2. Compute the value of the sample for n = 10 for the following signals
after they have gone through an ADC with the sample time T = 0.05
seconds.

(a) x(t) = 7sin(25t)

(b) x(t) = 2cos(50t) – 4cos(100t)

3. Compute the values of the following signals after going through an
ADC with T = 0.1 s for the values of n from 0 to 10.

(a) x(t) = 2cos(10t)

(b) x(t) = 2cos(72.83t)

4. For a digital filter system with the given ADC sample periods T ,
compute the Nyquist limit.

(a) T = 0.1 s

(b) T = 0.002 s

5. Determine which input signals to a digital filter or DSP system will be
aliased by the given sample period T .

(a) x(t) = 2cos(10t), T = 0.1 s

(b) x(t) = 8cos(15t), T = 0.2 s

21

Effect of Signal Sampling

6. Determine whether the following signals will be aliased for the given
sample period. If the signal is aliased into having the same sample
values as a lower frequency sinusoidal signal, determine that lower
sinusoidal signal.

(a) x(t) = 7cos(25t), T = 0.1 s

(b) x(t) = 3sin(37t), T = 0.15 s

(c) x(t) = 5cos(160t), T = 0.02 s

7. Determine the equation x(n) for the following signal x(t), using only
one cosine term, after it is sampled with a sample period of T = 0.1 s.
Hint: The higher frequency sinusoid is aliased to what?

x(t) = 3cos(7t) + 3cos(69.83t)

 Problems

1. Change the equations for the following signals to describe the signals
after they go through an ADC with a sample period of T seconds.

(a) x(t) = 3e–7t

(b) x(t) = 5sin(3t)

2. Compute the value of the sample for n = 6 for the following signals
after they have gone through an ADC with the sample period T = 0.02
seconds.

(a) x(t) = 12cos(3t)

(b) x(t) = 7 – 8e–2t

3. Compute the values of the following signals after going through an
ADC with T = 0.05 s for the values of n from 0 to 3.

(a) x(t) = 0.25t2

(b) x(t) = 3sin(20t) – 5cos(40t)

22

Digital Signal Processing

4. For a digital filter system with the given ADC sample periods T ,
compute the Nyquist limit.

(a) T = 0.025 s

(b) T = .001 s

5. Determine which input signals to a digital filter or DSP system will be
aliased by the given sample period T .

(a) x(t) = –2cos(10t), T = 0.3 s

(b) x(t) = 4sin(105t), T = 0.03 s

6. Determine whether the following signals will be aliased for the given
sample period. If the signal is aliased into having the same sample
values as a lower frequency sinusoidal signal, determine that lower
sinusoidal signal.

(a) x(t) = 17sin(25t), T = 0.1 s

(b) x(t) = 4cos(3t) + 2.5sin(100t), T = 0.05 s

(c) x(t) = 5cos(160t), T = 0.02 s

7. Determine the equation x(n) for the following signal x(t), using only
one cosine term after it is sampled with a sample period of T = 0.003
s. Hint: The higher frequency sinusoid is aliased to what?

x(t) = 2cos(15t) + 2cos(2079.4t)

 Answers to Self-Test

1a. x(n) = e–3nT

1b. x(n) = 5(nT)2

2a. x(10) = –0.464

2b. x(10) = –1.877

3. x(0) = 2.0, x(1) = 1.08

23

Effect of Signal Sampling

4a. 31.4 rad/s

4b. 1570.7 rad/s

5a. not aliased

5b. aliased

6a. not aliased

6b. aliased, –3sin(4.89t)

6c. aliased, 5cos(154.2t)

7. x(n) = 6cos(0.7n)

24

Digital Signal Processing

Digital Filter Specifications

 Introduction

In this chapter we begin the first step in designing digital filters, which is
drawing their graphical specifications. From these specifications we will
later learn how to determine the a and b coefficients for the digital filter.
A digital filter graphical specification is just an ideal plot versus the
frequency of where the gain curve of the digital filter is allowed to go and
not allowed to go. We need to define gain, which is the single most
important characteristic of any filter. We will also define and use the usual
axes of the gain plot of filters, as well as define the gain in dB.

There are four basic types of filter graphical specifications, one for each
of the four basic filter types: lowpass, highpass, bandpass, and bandstop.
Because of the periodicity of digital filters, a bandpass digital filter gain
plot may look like that of a highpass digital filter. Similarly, a lowpass
digital filter may have the identical gain plot of a bandstop digital filter.
The only way to distinguish them is to know the sampling frequency.
Knowledge of the sampling frequency used to specify each filter graphical
specification is essential. Two different specifications may look alike, but
they will behave differently because of aliasing!

 3.1 Introduction to Filter Gain, Loss, dB, and Graphical Filter
Specifications

The gain is defined below. Because it was shown in Chapter 2 that

Digital Filter Specifications

 c h a p t e r 3

25

all DSP systems start to repeat their output spectrums in magnitude
every 0.5 times the sampling frequency, our discussion will usually
limit the frequency axis to this value. But remember that many texts
and digital filter programs do not, leaving it up to the user to
interpret the plot based on the sampling frequency. Also, we will be
concerned only with the ratio of the amplitude of the output with
respect to the input amplitude for sinusoidal inputs at the same
frequency. This is the magnitude transfer function or gain, as shown
in the following equation.

gain = magnitude transfer function =
amplitude of output sinusoid at frequency w
amplitude of input sinusoid at frequency w

This simple definition of filter gain illustrates important ideas about
filters. The first is that digital filter designers, as opposed to digital control
designers, are usually interested only in sinusoidal signals. The second is
that digital filter designers are usually interested only in the amplitudes
of sinusoidal signals and not in the phase (the phase is extremely
significant for digital control). Finally, the gain is a ratio of output
amplitude over input amplitude for the same frequency. With a plot of
gain versus frequency of a filter, it is easy to see what the filter does to the
output by multiplying the input amplitude at any frequency by the gain
at that frequency. As we will soon see, the gain is the vertical axis of the
graphical specification.

In almost all engineering and especially in communications, gain is
specified in dB, which is defined in the following equation. This
terminology allows a wider range of gain values to be plotted on a
graph.

gaindB = 20 log(gain)

Thus if the output amplitude is 10 times the input amplitude at the same
frequency, the gain is 10 and the gaindB is 20. Every time the gain is 10
times what it was, the gain in dB increases by 20 dB. Note that since gain
in dB uses logarithms, a gain of 0 has no equivalent in gaindB. If gain in
dB is positive, it means that the gain is greater than 1; and if gain in dB
is negative it means that the gain is less than 1. These statements are
illustrated in Example 3.1.

26

Digital Signal Processing

Example 3.1. Computing gaindB from gain

Problem: Let’s assume that the gain of a filter at each of the following
frequencies is to be converted to gain in dB.
frequency, rad/s gain
0.1 2
0.5 1
1 0.5
5 0.1
20 1
40 10
100 100

Solution: Taking the logarithm of each gain and multiplying it by 20 gives
the results shown in the following columns.
frequency, rad/s gaindB

0.1 6
0.5 0
1 –6
5 –20
20 0
40 20
100 40

It is usual in engineering to plot the frequency along the horizontal axis,
using a log scale, since most filter properties are specified in ratios of the
frequency, such as dropping 20 dB per decade. This means the gain
reduces by a factor of 10 every time the frequency increases by a factor of
10. By then plotting gain in dB and frequency as if on semi-log paper,
every time any distance on either axis is doubled, that value is multiplied
by 10. This allows a wider range of frequency and gain values to be plotted.
Note again, however, that by plotting the gain in dB, a negative value in
dB means the gain was less than 1. Using a log base 10 scale on the
frequency axis means there will never be a zero frequency. Usually there
is no need to compute the log of the frequency, since most programs print
out the frequency axis scaled to logarithms already.

Sometimes the magnitude of the transfer function is specified as loss,
which is just the inverse of the gain. In terms of dB, loss is just the negative
of the gain in dB, as shown in the following equation.

27

Digital Filter Specifications

loss = (gain)–1 and lossdB = –gaindB

 3.2 The Lowpass Digital Filter Specification

One of the easiest graphical specifications to draw is that for the lowpass
digital filter. From analog filtering the student remembers that a lowpass
filter is supposed to pass (or not reduce very much) low frequency signals,
while it should stop (or reduce greatly) frequencies above a specified
frequency. The band of frequencies specified to be passed by the filter is
called the passband, while the range of frequencies specified to be
stopped by the filter is called the stopband. As saying this is cumbersome
and loaded with ambiguities, almost always a graphical specification is
drawn, using the following definitions:

gpmax is the maximum allowed gain in the passband.

gpmin is the minimum allowed gain in the passband.

gsmax is the maximum allowed gain in the stopband.

wp = the highest frequency in the passband

ws = the lowest frequency in the stopband

wf = the folding frequency or half the sampling frequency = π/T in rad/s

Using these definitions, the graphical specification for a lowpass digital
filter looks like that in Figure 3.1, where also the frequency axis stops at
w = wf , since all DSP system gains will repeat after that, whether you like
it or not.

In Figure 3.1 the forbidden regions are shown as shaded blocks. Any filter
with a gain versus frequency within the clear regions is a lowpass digital
filter that satisfies the specifications. There is no minimum stopband gain
since any gain below the maximum is even better. The region between
the passband and the stopband is called the transition band. The
narrower it is, the better the filter is usually considered to be. However,
in succeeding chapters we will see that just as in the analog filter case, the
narrower the transition band, the more complex the filter design.

28

Digital Signal Processing

Example 3.2. Specification of a digital lowpass filter

Problem: Let’s assume that the customer wants a digital filter that will not
amplify the signal at all in the passband while not reducing the gain by
more than 3 dB in the passband. The passband extends out to 1,000 rad/s
and the stopband starts at 10,000 rad/s. The digital filter is to reduce the
gain in the stopband by at least 40 dB. The sampling frequency is given
as 40,000 rad/s, or T is 0.16 ms.

Solution: Given these specifications, the graphical specification for the
digital lowpass filter is shown in Figure 3.2, with the frequency axis only
going out to 20,000 rad/s, since any filter gain will repeat after that.

29

g
w w w

frequency
rad /sg

g

gain
in dB

p s f
pmax

pmin

smax

Figure 3-1. The general lowpass filter graphical specification

frequency
rad/s

gain
in dB

1,000 10,000 20,000
0

−3

−40

Figure 3.2. Lowpass filter graphical specification of Example 3.2

Digital Filter Specifications

 3.3 The Highpass Digital Filter Specification

The highpass filter graphical specification is also not too difficult to draw.
A highpass filter is a filter that stops (or greatly reduces) frequencies
below a specified frequency, but passes (or changes very little) the
frequencies above a specified frequency. The graphical specification for
a highpass digital filter can be drawn using the preceding definitions for
the lowpass digital filter specification, except that wp is the lowest
frequency in the passband and ws is the highest frequency in the
stopband. This is shown, in general, in Figure 3.3, remembering that
there is no need to extend the specification beyond half the sample
frequency of wf .

Example 3.3. Specification of a highpass digital filter

Problem: Let’s assume the customer wants a digital filter running (reads
the ADC and outputs to the DAC) at 500 Hz. This is 1,000π rad/s. The
filter is required to reduce input frequencies below 200 rad/s by more
than 20 dB, but not reduce any input frequencies above 500 rad/s by
more than 1 dB and not increase any signals above that.

Solution: The graphical specification for this filter is shown in Figure 3.4.
Any filter designed using the methods shown in Chapters 7, 10, and 11
that has a gain in the clear area meets the customer’s specification for the
filter.

30

g
w w w

frequency
rad/sg

g

fps

smax

pmin

pmax

Figure 3.3. The general highpass filter graphical specification

Digital Signal Processing

 3.4 The Bandpass Digital Filter Specification

The digital bandpass filter specification is a little more complex than the
previous two graphical specifications simply because the allowed filter
gain region is more complex. A bandpass filter is one that passes (or
changes very little) frequencies that are between two specified frequen-
cies, while it stops (or greatly reduces) frequencies above and below two
other specified frequencies. In order to draw the graphical specifications
for a bandpass filter, the following definitions are needed.

gsmax is the maximum allowed gain in the stopbands.

gpmax is the maximum allowed gain in the passband.

gpmin is the minimum allowed gain in the passband.

ws1 is the upper frequency limit of the lower stopband.

wp1 is the lower frequency limit of the passband.

wp2 is the upper frequency limit of the passband.

ws2 is the lower frequency limit of the upper stopband.

wf is half the sampling frequency.

31

200 500
frequency
rad/s

gain

0

−1

−20

1,571

in dB

Figure 3.4. The highpass filter specification for Example 3.3

Digital Filter Specifications

Although this type of filter specification could be made even more
complex by specifying different maximum gains for each stop band, this
is not usually done. Notice that now there are two stopbands and two
transition bands. The general graphical specification for a bandpass
digital filter is shown in Figure 3.5. Example 3.4 shows how to draw the
bandpass graphical specification.

Example 3.4. Specification of a bandpass digital filter

Problem: The customer’s requirements are to design a digital filter with
the time between samples equal to 0.0005 s. The filter is to reduce all
frequencies below 10 Hz and above 500 Hz by more than 60 dB, while
not reducing the frequencies between 50 Hz and 100 Hz by more than 2
dB. The filter should also not increase any frequency in the passband by
more than 1 dB.

Solution: First the sample time T is used to determine the folding
frequency.

wf =
π
T

 = 6283 rad/s

All the other frequencies are multiplied by 2π to convert to rad/s. Then
the graphical specification for the filter is drawn, as in Figure 3.6.

32

gain
in dB

frequency
rad/s

ww ww w
g

g

g

p1 p2 s2 fs1

smax

pmin

pmax

Figure 3.5. The general bandpass graphical specification

Digital Signal Processing

From Figures 3.3 or 3.4, it can be seen that the graphical specification for
a highpass digital filter that is plotted out to the sampling frequency would
have the same form as a bandpass filter graphical specification plotted
only out to half the sampling frequency. In fact, if the bandpass filter were
perfectly symmetrical in frequency (not log of the frequency), it would
look exactly like a highpass filter plotted out to its sampling frequency.
The only way to be sure is to know what the sampling frequency is and
where repetition begins.

 3.5 The Bandstop Digital Filter Specification

The bandstop filter is used to stop (or greatly reduce) all frequencies
between two specified frequencies, while passing (or reducing very little)
frequencies below a specified frequency and above another specified
frequency. The definitions given for the bandpass filter can be used for
the stopband filter, since the only difference is that now the two stopband
frequencies are between the two passband frequencies. Notice that now
there is one stopband, two passbands, and two transition bands. Figure
3.7 shows the general stopband filter graphical specification. Again, any
filter that we learn to design in later chapters with a gain in the clear
region will meet the specification for the filter.

Example 3.5. Specification of a digital bandstop filter

Problem: The requirements of the filter are that the input signal is
sampled at 10,000 rad/s, the frequencies in the input between 1,000

33

gain
in dB

frequency
rad/s

3142314 62863 6283
1

−2

−60

Figure 3.6. The bandpass specification for Example 3.4

Digital Filter Specifications

and 2,000 rad/s are to be reduced by at least 40 dB, and the filter
is not to increase or decrease frequencies below 500 or above 4,000
rad/s by more than 2 dB.

Solution: The graphical specification for this bandstop digital filter is
drawn in Figure 3.8.

The same comment that was made about the relationship of the graphical
specifications of highpass and bandpass filters also applies to the relation-
ship between bandstop and lowpass digital filter graphical specifications.
Because digital filters repeat beyond half the sampling frequency, the
graphical specifications for a digital lowpass filter plotted out to its
sampling frequency would look like the specifications for a symmetrical

34

W W W W
frequency
rad/s

W
g

g

g

gain
in dB

p1 s1 s2 p1 f
pmax

pmin

smax

Figure 3.7. The general bandstop filter specification

500 1,000 2,000
frequency
rad/s

gain
in dB

5,0004,000
2

−2

−40

Figure 3.8. Bandstop filter specification for Example 3.5

Digital Signal Processing

bandstop digital filter. The sampling frequency tells you if the drawing is
a repetition of the lowpass filter specification or a bandstop filter.

 3.6 Alternate Graphical Specifications

Many digital graphical specifications are drawn with the horizontal axis
representing the frequency multiplied by the sample period rather than
just the frequency of the gain function. This is just a scaling so that all
filters that actually do the same thing with respect to the sampling
frequency will look the same, since multiplying by T is dividing by 1/f s,
the sampling frequency in Hz. This new frequency is called the digital or
scaled frequency. It is a fictitious frequency, used only for convenience to
specify stop and pass frequencies in terms of fractions of the sampling
frequency.

This scaling is helpful in determining the filter coefficients in later
chapters. To see what a graphical specification says about the gain at a
real frequency, you only need to divide the graph frequency by T . Since
the real frequency into or out of a digital filter is multiplied by T , the
maximum frequency before the gain repeats at wf is π, as shown in the
following equation.

wf(scaled) = wf(rad/s) * T = 0.5wsT = 0.5(2π
T

)T = π

Thus all graphical specifications when scaled by T go from 0 to π rad/s. The
pass and stop frequency specifications also need to be given in terms of the
scaled frequency instead of in rad/s. This amounts to multiplying the orig-
inal stop and pass frequency specifications by T also. Example 3.6 is just
Example 3.5 replotted with the frequency axis scaled by multiplying by T .

Example 3.6. Graphical specification of a digital stopband filter
using scaled frequency

Problem: The desired digital filter graphical specifications are given by
Example 3.5, but the graphical specification is to be drawn using scaled
frequencies.

Solution: Since the sampling rate in Example 3.5 was 10,000 rad/s, which
is 2π/T , we have that T = 0.628 ms. When all the frequency specification

35

Digital Filter Specifications

values are multiplied by this number, the new graphical specification is that
shown in Figure 3.9, using scaled frequency values on the horizontal axis.

 Summary

In Chapter 3 we learned how to draw the graphical specifications of digital
filters. The vertical axis is gain, usually in dB, and the horizontal axis is
frequency, which is usually scaled logarithmically. The graphical specifi-
cations for the four basic types of filters were developed and illustrated.
Because digital filters repeated their gain characteristics past the folding
frequency (half the sampling frequency), most digital filter plots only go
out to that frequency. This does not mean they have no gain out there;
it means the gain is a repetition of the lower frequency gain. Also
remember that any frequency input to the digital filter above the folding
frequency will be added to the corresponding frequency below the
folding frequency before the filter works on it.

Finally we defined the scaled frequency, which is the actual input sinusoid
frequency of interest multiplied by the sampling period T . By doing this,
all graphical specifications and filter gain plots repeat above π rad/s. This
is just a fictitious frequency, but it puts all filter specifications relative to
the sampling frequency.

 Problems

 1. Draw the graphical specification of a digital lowpass filter out to the
folding frequency in rad/s that will not reduce the gain of frequen-

36

0.31 0.63 1.25
frequency

gain
in dB

3.142.5
2

−2

−40

Figure 3.9. Bandstop filter specification for Example 3.6

Digital Signal Processing

cies below 50 rad/s by more than 2 dB, while reducing the gain of
frequencies above 100 rad/s by more than 20 dB. The sampling rate
is 500 rad/s.

 2. Draw the graphical specification for a digital highpass filter out to the
folding frequency in rad/s that will not change the gain above 500
rad/s by more than +/– 3 dB, while reducing the gain below 200
rad/s by more than 40 dB. The sampling time T = 0.001 s.

 3. Draw the graphical specification for Problem 2, but use scaled
frequencies.

 4. Draw the graphical specification for a bandpass digital filter out to its
folding frequency that will not reduce the gain between 100 and 200
rad/s by more than 1 dB, but will reduce the gain above 400 rad/s and
below 50 rad/s by more than 25 dB. The sampling time T = 0.0005 s.

 5. Draw the graphical specification for a stopband digital filter out to its
folding frequency that will reduce the gain between 1,000 rad/s and
5,000 rad/s by more than 60 dB, but will not reduce the gain above
10,000 rad/s or below 150 rad/s by more than 3 dB. The sampling
rate is 10,000 Hz.

 6. Repeat Problem 5 using scaled frequencies.

 7. Draw the graphical specification for a highpass digital filter out to its
folding frequency in rad/s that will keep the gain above 500 rad/s
between 1 and –3 dB, while reducing the gain below 100 rad/s below
35 dB. The sampling period T = 3.14 ms.

 8. Draw the graphical specification for a lowpass digital filter out to its
sampling frequency in rad/s that will not reduce the gain more than
4 dB below 250 rad/s, while reducing the gain above 1,000 rad/s by
more than 45 dB. The sample period T = 1.57 ms.

 9. Draw the graphical specification for Problem 1 out to 500 rad/s. If
this were the graphical specification for a sampling rate of 1,000
rad/s, state the type of filter for which it is a graphical specification.

10. Draw the graphical specification for Problem 2 out to the sampling
frequency. If this were now the graphical specification for a sampling

37

Digital Filter Specifications

rate of 2 kHz, state the type of filter for which it is a graphical
specification.

11. Draw the graphical specification for Problem 4 with the frequency
axis scaled in Hz and the sampling time T = 0.001.

12. Draw the graphical specification for Problem 5 with the frequency
axis scaled in Hz and the sampling rate is 5,000 Hz.

13. Draw the graphical specification for Problem 1 in terms of loss in dB.

14. Draw the graphical specification for problem 2 in terms of loss in dB.

38

Digital Signal Processing

z-Trans forms

 Introduction

We have shown the equation coded for a digital filter in Chapter 1, and
in Chapter 2 we showed how to get the discrete or sampled time equation
of a signal that is the input or output of a digital filter. However, not all
the math representations have been given. In order to analyze or design
a digital filter or any other DSP system, an equation of the system itself is
required, not just the DSP input-output equation. We get this system
equation by using the z-transforms of the sampled signals, just as analog
system transfer functions are obtained from the Laplace transforms of
signals. The nice thing about understanding and obtaining z-transforms
is that it involves only algebra, whereas Laplace transforms involve
integration from calculus.

 4.1 The Need for z-Transforms of the DSP Equation

This chapter defines and shows how to obtain the z-transforms of any
sampled signal. As some of the results of taking the z-transforms of specific
sampled time signals are listed in Table 4.1, the z-transforms of many
signals will have to be computed only once. Then, just as for Laplace
transforms, a transfer function will be obtained in Chapter 5 using the
ratio of the output over the input signals of the DSP system (both signals
are z-transformed). This is a necessary evil to get the mathematical
description of the sampled system. The transfer function must be the

z-Transforms

 c h a p t e r 4

39

system description, since by the preceding definition, if you multiply it by
the z-transform of any input signal, you get the z-transform of the output
signal as shown hereafter, with capitals representing the z-transforms of
the signals.

Y(z) =
Y(z)
X (z)X(z) = T (z)X (z)

In the equation above, x(t) is the input into the ADC and y(t) is the
output from the DAC and T (z) must be the DSP system description, since
if you multiply it by the z-transform of the input, you get the z-transform
of the output.

The reason for using z-transforms is that the preceding equation is valid.
If you took the ratio of sampled output signal to sampled input signal to
a DSP system, you would get some expression, but it would change for
each input signal. By using the z-transforms of the signals, the ratio of any
output to the corresponding input is always the same expression and must
be the system math description, since when it is multiplied by the input,
you get the output. With a math description of a digital filter, it is then
possible to analyze its characteristics and even design a filter to meet the
desired graphical specifications shown in Chapter 3.

 4.2 The Definition of the z-Transform and Its Use

The definition of the z-transform of a sampled signal f (n) is F (z), as
defined by Equation 4.1.

F (z) = ∑
n=−∞

∞

f (n)z−n = Z[f (n)]= ⋅ ⋅ ⋅ + f (−1)z1 + f (0) + f (a)z−1

+ f (2)z2⋅ ⋅ ⋅
(Equation 4.1)

The sampled signal is given by f (n) as shown in Chapter 2, and f (0), f (1)
are the sample values at t = 0 and t = 1T , and so on. If the signal out of
an ADC consists of a few samples, the z-transform of this signal, F (z), is
easy to get, as shown in the Example 4.1. One important property of a
z-transformed signal using Equation 4.1 is that no n term will occur in the
z-transformed signal. This is a good thing to check. If an equation has
been z-transformed and the sample number n appears anywhere in the
equation, a mistake has been made!

40

Digital Signal Processing

Example 4.1. The z-transform of a signal with only a few sample
values

Problem: Let the input signal f (t) into an ADC be 2t for t greater than
zero and less than 4, and zero otherwise. Let’s find the z-transform of this
short signal when T = 1.

Solution: The sample times occur at integer values of t, and the only
nonzero output samples of the ADC will be f (1) = 2, f (2) = 4, f (3) = 6.
Using the definition for the z-transform of a signal in Equation 4.1, it is
seen that the z-transform of the signal is given by the following equation.

F (z) = 2z−1 + 4z−2 + 6z−3

In order to determine the z-transforms of more complex signals and those
that never end, we need to define two basic sampled signals and obtain
their z-transforms. The first is a sampled signal that consists of just one
sample, this is called the impulse or δ function. It is defined mathemati-
cally in the following equations, and as can be seen, it is not the δ function
or impulse function used for continuous signals since it has a finite
amplitude of 1.

δ(nt) = δ(n) = 0, n ≠ 0

δ(0) = 1

The other basic sampled signal that needs to be defined is the sampled
unit step function u(n), as given in the following equation.

u(nT) = u(n) = 1, n ≥ 0

Notice again the shorthand notation of replacing the argument in each
function by n, since it is understood that u(n) occurs at t = nT .

It is easily shown in the following equations that the z-transform of the
impulse function is Z[δ(n)] = 1, since δ(0) = 1 and all other sample values
are 0.

Z[δ(n)] = ⋅ ⋅ ⋅ + δ(−1)z1 + δ(0)z0 + δ(1)z−1 + ⋅ ⋅ ⋅

= 1z0

= 1

41

z-Transforms

Also the z-transform of an impulse function shifted by t = kT , where k is
an integer, is easy to obtain, as shown in the following equation.

Z[δ(n − k)] = ⋅ ⋅ ⋅ + δ(−1)z1−k + δ(n − k)z−k + δ(1)z−k−1 + ⋅ ⋅ ⋅ = z−k

The preceding result is obtained since the impulse function is zero
everywhere the argument is not zero.

The z-transform of the impulse allows the discrete time equation of a few
samples to be written mathematically and then the z-transform can be
taken, as shown in Example 4.2, or the discrete time equation can easily
be written from the z-transform.

Example 4.2. Using the impulse function for short sampled signal
description

Problem: Use the impulse function to describe a sampled signal where the
initial sample x(0) = 2, x(3) = –2, and the rest of the samples are zero.

Solution: Using the shifting property of time signals and the fact that a
sum of two time-shifted impulse functions doesn’t add at the correspond-
ing times when they are nonzero, we get

x(n) = 2δ(n) – 2δ(n – 3)

X(z) = 2 – 2z–2

The z-transform of the unit step, u(n), is more difficult to obtain in a
closed form, but the procedure only involves a little algebra, which is
shown in the following equations.

Z[u(n)] + U (z) = 1 + z−1 + 1z−2 + 1z−3 + ⋅ ⋅ ⋅

This summation starts at f (0) = u(0) =1 and goes on forever. However, if
we multiply U(z) by z–1 we get

z−1U (z) = 1z−1 + 1z−2 + ⋅ ⋅ ⋅

If we subtract the second equation from the first equation, we get the
following equations.

U (z) − z−1U (z) = 1

42

Digital Signal Processing

U (z)[1 − z−1] = 1

Now dividing both sides by the term in the brackets, we get the final
z-transform of u(n):

U (z) =
1

1 − z−1 =
z

z − 1

As can be seen, U(z), the z-transform of u(nT) = u(n), is not very
complicated. One of the major uses of the sampled unit step is to start
and stop a signal. This is shown in one of the problems at the end of the
chapter.

 4.3 Derivation of the Necessary z-Transform Pairs

In the preceding section, we determined the z-transforms of two basic
sampled signals, the unit impulse and the sampled unit step. In this
section we expand on the pairs of sampled signals and the corresponding
z-transform, using basic algebra. It is useful also to relate the sampled
signal coming out of an ADC to the analog signal coming in, which is
shown in column 1 of Table 4.1.

The definition of the z-transform of a sampled signal shows that if any
sampled signal is A times bigger, then its z-transform is A times bigger, as
shown in the following equation.

Z[Af (n)] = ⋅ ⋅ ⋅ + Af (−1)z1 + Af (0) + Af (1)z−1 + ⋅ ⋅ ⋅

= A[⋅ ⋅ ⋅ + f (−1)z1 + f (0) + f (1)z−1 + ⋅ ⋅ ⋅] = AZ[f (n)]

Using the property just defined, we already can say

Z[Aδ(n)] = A

and

Z[Au(n)] =
Az

z − 1

Thus we now have the z-transform of a step of A after it is sampled.

43

z-Transforms

Another very useful and common analog signal is the exponential
decaying signal that starts at t = 0. This signal and its sampled equation
are given in the following equations.

f (t) = Ae–at u(t)

f (nT) = f (n) = Ae–anTu(n)

= A(e-aT)n = Acn, c = e–aT = a constant

44

Analog Signal Sampled Signal Z-transformed Signal

Aδ(n) A

Au(t) Au(n) Az
z − 1

Ae-atu(t) Ae−aTn u(n) Az
z − e−aT

Acn u(n) , c = e−aTAz
z − c

Atu(t) AnTu(n) ATz
(z − 1)2

Acos(wt)u(t) Acos(wTn)u(n)
Az[z − cos(wT)]

z2 − 2zcos(wT) + 1

Asin(wt)u(t) Asin(wTn)u(n)
Azsin(wT)

z2 − 2zsin(wT) + 1

Ae−atcos(wt + α)u(t) Acncos(wTn + α)
Az[zcos(α) − c cos(α − wT)]

z2 − 2czcos(wT) + c2
−

Table 4.1
Table of z-transforms of signals

Digital Signal Processing

Now using the definition of a z-transform and the z-transform of a step of
A , we can get the z-transform of a sampled exponentially decaying signal
by using the following equation.

Z[Acn] = ∑
n=−∞

∞

Acnu(n)z−n = ∑
n=0

∞

Acnz−n = ∑
n=0

∞

A (c−1z)−n

In the preceding section we found that

∑
n=0

∞

z−n =
z

z − 1

so that we must have

∑
n=0

∞

(c−1z)−n =
c−1z

c−1z − 1
 =

z
z − c

 =
z

z − e−aT

Thus the z-transform of a sampled exponential decaying signal that starts
at t = 0 is

Z[Ae−anT] =
Az

z − c
, where c = e–aT .

The z-transform just given is one of the most important in DSP. Later it
will be used to determine the stability and other properties of any DSP
system.

Table 4.1 lists the z-transform pairs that we have obtained so far, along
with some others. The mathematical derivation of some of these is done
the same way as that for the exponentially decaying sampled signal, but
the final closed form solution requires the use of the Euler equation,
which is not given until Chapter 6. The organization of Table 4.1 is that
the analog signal is given in column 1, the sampled version of the analog
signal is given in column 2, and the z-transform of the sampled signal in
column 2 is given in column 3. Note that the time signals are zero before
t = 0, which is indicated by the u(t) or the u(n). The z-transform of these
sampled signals is not the z-transform of the product of the z-transforms
of each component of the product. The z-transform was obtained by the
same methods shown for the decaying exponential sampled signal

45

z-Transforms

starting at t = 0. The z-transform of the product of two signals is not the
product of the z-transforms. Example 4.3 illustrates the use of Table 4.1.

Example 4.3. Using Table 4.1 to get the z-transforms of signals

Problem: Let the input signal to an ADC be given below with T = 0.5 s.

x(t) = 7e−3tu(t)

Solution: For the preceding signal, we can see that A = 7, a = 3. Thus the
sampled signal and the z-transform of the sampled signal are given in the
following equations.

x(n) = 7e−1.5nu(n)

X(z) =
7z

z − e−1.5

 4.4 Derivation of the Major z-Transform Property Using Algebra

Using basic algebra we will use the definition of the z-transform to derive
the major property of z-transforms. Later this property will allow the
student to go back and forth between the DSP system math description
T (z) in terms of the variable z and the difference equation given in
Chapter 1, which is the equation that is actually coded. This property will
be developed in two different ways for the student. This property is called
the shifting property, and it relates the z-transform of sampled signals that
are time-shifted versions of each other if the time shift is in integer
multiples of the sample time T . Remember that any signal or function of
time that is delayed by kT is written in terms of the unshifted signal f (nT)
as f (nT – kT), or f (n – k). After the first method of derivation of this
property, examples using it will be given.

If you have the representation of the z-transform of a sampled signal f (n)
either as F(z) or as a specific function of z, it is very helpful to use this to
write the time-shifted sampled signal, since the difference equation in
Chapter 1 is in terms of shifted and unshifted input and output sampled
signals. This representation is derived next. From the definition in
Equation 4.1 we have

46

Digital Signal Processing

Z[f (n − k)] = ∑
n=−∞

∞

f (n − k)z−n

If we let u = n – k in the expression on the right, we have

Z[f (n − k)] = ∑
n=−∞

∞

f (u)z−(u+k) = ∑
u=−∞

∞

f (u)z−uz−k = z−k ∑
u=−∞

∞

f (u)z−u = z−kF (z)

Where we have used n = u + k and in the definition z can be replaced by
u without any effect (it is a symbol used as a placeholder). The
significance of the preceding equation (called the shifting property) is
that if the differenc e equation for a digital filter is given, the use of this
property on the equation gives an algebraic equation for the digital filter.
Another significant property is shown in later chapters when we design a
digital filter or DSP system, which is mathematically expressed in terms
of the variable z, we can use the property to get the difference equation
to code in a computer or a DSP chip. Let’s look at a few examples of using
this property on a sampled signal. In the next chapter this property is
used on the DSP difference equation to obtain the math description of
the DSP system.

Example 4.4. Writing the z-transform of the sampled signal f(n)
delayed by 3 sample periods

Problem: Let f (n) = f (nT) be an arbitrary sampled signal. We want to write
the equation for this signal if it is delayed in time by 3T .

Solution: The delayed signal is written mathematically as f (nT – 3T) or
f (n – 3), where k = 3. A direct application of the preceding property gives
the following answer, where F(z) is the z-transform of f (n).

f (n – 3) = z–3F(z)

Example 4.5. Writing the z-transform of an equation with shifted
functions

Problem: Write the z-transform of the following equation of a DSP system.

y(n) – 2y(n – 1) = 0.5x(n – 1)

47

z-Transforms

Solution: Taking the z-transform of all the signals in the equation, we get
the following equation.

Y(z) = 2z−1Y(z) + 0.5z−1X (z)

The significance of this property of the z-transform of a signal is its use
on the equation of a DSP system, as in Example 4.5, especially the digital
filter equation given in Chapter 1. Remember it is composed of current
and delayed inputs and delayed outputs. This kind of equation is called
a difference equation, and it is the discrete-time equivalent to the analog
differential equation. In Chapter 5 we will see that this property of the
z-transform will allow us to write the difference equation as an algebraic
equation and then solve it, to get an algebraic equation of a digital filter
by getting the ratio of the z-transform of the output over the z-transform
of the input, which is the transfer function T (z).

Earlier we said we would develop this shifting property in another way,
which is actually more intuitive. All we need to do is to look at a few simple
sampled signals and compare their z-transforms with and without delays
in the sampled-time domain. First let’s look at a signal f 1(n) that consists
of a single sample at nT of 5, and then at a signal, f 2(n) of two samples
of 2 at nT and 3 at (n + 1)T . Let g1(n) be the signal f 1(n) delayed by 2T
or g1(n) = f 1(n – 2), and g2(n) be the signal f 2(n) delayed by 5T or g2(n)
= f 2(n – 5). The z-transforms of all these signals are given in the following
equations, using the definition given in Equation 4.1.

F1(z) = 5z−n

F 2(z) = 2z−n + 3z−(n+1)

G1(z) = 5z−(n+2) = 5z−2z−n = z−2F 1(z)

G2(z) = 2z−(n+5) + 3z−(n+6) = 2z−5z−n + 3z−5z−(n+1) = z−5F 2(z)

As can easily be seen, the G1(z) and G2(z) z-transforms are just the
corresponding z-transforms of the undelayed transforms F 1(z) and F2(z)
each multiplied by z raised to the negative power of the delay in terms of
the sample time T . Mathematically this can be written in general as

Z[g(nT)] = Z[f (nT − kT)] = z−kZ[f (nT)]

48

Digital Signal Processing

As you can see, this is just the equation expressing the shifting property
again.

 Summary

In this chapter, we have introduced the z-transform of a sampled or
discrete-time signal. The definition was given, and it was seen to be an
algebraic equation. This definition was used to find the z-transform of an
impulse signal and a sampled unit step signal. These two z-transforms will
be used later to determine two digital filter approximations to analog
filters. One other z-transform of a signal was determined, the z-transform
of an exponential signal. This z-transform will be used later to determine
the stability of digital filters.

We also determined one of the most important properties of z-transforms,
the shifting property. This property will allow us to turn the difference
equation of a digital filter into an algebraic equation and then determine
the mathematical description of a digital filter, called its transfer function.
Also, if we have determined the mathematical description, or transfer
function, of a digital filter, we can use the shifting property to write the
difference equation of the filter that is actually coded.

Table 4.1 gives the input signal into an ADC in column 1, the
corresponding sampled signal in column 2, and the z-transform of
that signal in column 3 for several signals using the definition of the
z-transform. Table 4.1 can just as easily be used in the reverse direction
to give the sampled time signal in column 2, given the z-transformed
signal in column 3. This process will be needed in some of the
following chapters.

 Self-Test

1. Determine the z-transform of the following sampled signal.

x(n) = 5u(n)

2. Determine the z-transform of the following sampled signal.

y(n) = 3e–8nu(n)

49

z-Transforms

 3. Determine the z-transform of the following analog signal after it goes
through an ADC with T = 0.01 s.

x(t) = 10e–2tu(t)

 4. Determine the z-transform of the following sampled signal.

y(n) = 5(0.9)nu(n)

 5. Determine the z-transform of the following sampled signal.

x(n) = 1δ(n − 1) + 2δ(n − 2) + 3δ(n − 3)

 6. Determine the z-transform of the following sampled signal.

x(n) = 5cos(1.4n)u(n)

 7. Determine the z-transform of the following analog signal after going
through an ADC with T = 0.01 s.

x(t) = 21sin(5t)u(t)

 8. Determine the z-transform of the following sampled signal.

y(n) = 7(0.8)n cos(0.4n + 1.57)u(n)

 9. Determine the z-transform of the following analog signal after going
through an ADC with T = 0.03 s.

x(t) = 3tu(t)

10. Determine the z-transform of the following sampled signal.

x(n) = 0.34nu(n)

11. Determine the z-transform for the analog signal with the following
Laplace transform after going through an ADC with the sampling
period T = 0.014 s.

X(s) =
2
s

50

Digital Signal Processing

12. Determine the z-transform for the analog signal with the following
Laplace transform after going through an ADC with a sampling
period T = 0.002 s.

X (s) =
1.4

s + 5

13. Determine the z-transform for the following sampled signal.

x(n) = 0.1u(n) – 0.1δ(n) – 0.1δ(n – 1)

14. Determine the equation of the sampled pulse x(n) described here,
using the sampled unit step function.

x(n) is 2 for n = 0 through and including n = 5
and zero for all other n’s.

15. Determine the equation of the following sampled pulse signal.

x(n) = –3u(n) + 3u(n – 7)

16. Given the only nonzero sample values of the following signal,
determine the z-transform of the signal.

x(–1) = 2, x(0) = –1, x(2) = 1, x(3) = –4

17. Determine the z-transform of the following signal if it were sampled
at T = 0.05 s.

x(t) = 3e−7t cos(25t)u(t)

 Problems

1. Determine the z-transform of the following sampled signal.

x(n) = −6u(n)

2. Determine the z-transform of the following sampled signal.

y(n) = 5.7e−5nu(n)

51

z-Transforms

 3. Determine the z-transform of the following analog signal after it goes
through an ADC with T = 0.02 s.

x(n) = −7sin(124t)u(t)

 4. Determine the z-transform of the following sampled signal.

x(n) = 9(0.89)nu(n)

 5. Determine the z-transform of the following sampled signal.

y(n) = δ(n) − 3δ(n − 1) + 2δ(n − 4)

 6. Determine the z-transform of the following sampled signal.

x(n) = −4sin(2.5n)u(n)

 7. Determine the z-transform of the following analog signal after going
through an ADC with T = 0.07 s.

x(n) = −5cos(25t)u(t)

 8. Determine the z-transform of the following sampled signal.

x(n) = 2(0.7)ncos(0.8n − 0.2)u(n)

 9. Determine the z-transform of the following signal after going
through an ADC with T = 0.05 s.

x(t) = 7tu(t)

10. Determine the z-transform of the following sampled signal.

y(n) = 1.37nu(n)

11. Determine the z-transform for the analog signal with the following
Laplace transform after going through an ADC with the sampling
period T = 0.005 s.

X (s) =
−15

s
52

Digital Signal Processing

12. Determine the z-transform or the analog signal with the following
Laplace transform after going through an ADC with a sampling
period of T = 0.025 s.

X(x) =
5

s + 10

13. Determine the z-transform for the following sampled signal.

y(n) = 2.4u(n − 1) + 4δ(n)

14. Determine the equation of the following sampled pulse x(n), using
the sampled unit step function.

x(n) is –3 for n = –1 through and including n = 4
and zero for all other n’s.

15. Determine the equation of the following sampled pulse signal.

y(n) = 7u(n + 1) −7u(n − 4)

16. Given the only nonzero values of the following signal, determine the
z-transform of the signal.

x(−2) = −1, x(1) = 2, x(2) = −1

17. Determine the z-transform of the following signal if it were sampled
at T - 0.1 s.

x(t) = −7e−3tcos(17t)u(t)

 Answers to Self-Test

1. 5z
z − 1

2. 3z
z − e−8

3. 10z
z − e−0.02

53

z-Transforms

 4.
5z

z − 0.9

 5. 1z−1 + 2z−2 + 3z−3

 6.
5z[z − cos(1.4)]

z2 − 2z cos(1.4) + 1

 7.
21z sin(0.05)

z2 − 2 cos(0.05) + 1

 8.
7z[z cos(1.57) − 0.8 cos(1.57 − 0.4)]

z2 − 1.6z cos(0.4) + 0.64

 9.
0.09z

(z − 1)2

10.
0.34z

(z − 1)2

11.
2z

z − 1

12.
1.4z

z − e0.01

13.
0.1z−1

z − 1

14. x(n) = 2u(n) – 2u(n – 6)

15. X (z) =
−3z

z − 1
 +

3z−6

z − 1
 =

3z(z−7 − 1)
z − 1

16. X (z) = 2z − 1 + z−2 − 4z−3

17. X (z) =
3z(1 − e−0.35 cos(1.25))

z2 − 2e−0.35z cos(1.25) + e−0.7

54

Digital Signal Processing

The z-Transf orm of the DSP Equat ion The z-Transf orm of the DSP Equat ion

 Introduction

In this chapter we apply the z-transform to the general DSP equation
given in Chapter 1. First the equation is modified to a more useful form,
then the z-transform is taken of the discrete time signals on both sides of
the equation. The general DSP equation in either form is an input-output
difference equation and cannot be solved for the output given the input
except by iteration. By taking the z-transform of the equation, an algebraic
equation results that can be solved explicitly for the output given the
input. The terms multiplying the input to get the output must be the
equation of the filter called the transfer function, which is needed to
design and analyze DSP systems and digital filters. It must be remembered
that it is the general DSP equation that is coded, but it is the mathematical
description of the DSP system that is used to analyze and design DSP
systems.

 5.1 The Transformation of the Modified DSP Equation

The Modified DSP Equation

The general DSP equation given in Chapter 1 is given again in Equation 5.1.
This equation assumes that a signal sample with no subscript refers to the
input or output sampled value at the current time, and a negative integer
subscript refers to the corresponding number of sample periods previous

The z-Transform of the DSP Equation

 c h a p t e r 5

55

to the current time. This is a convenient and easy way to write the equation
for Chapter 1, but here a better and more rigorous equation must be
written by making a few changes to Equation 5.1.

y = (b−1y−1 + ⋅ ⋅ ⋅ + b−my−m) + (ax + a−1x−1 + ⋅ ⋅ ⋅ + a−nx−n) (Equation 5.1)

For mathematical convenience the sampled signal subscripts will be used
as arguments, with the current sample being called the nth sample, so y
and x go to y(n) and x(n) respectively. Mathematically this is no change
at all, since a subscripted variable is mathematically just a function of an
integer subscript. Also x–1 will go to x(n – 1), and other signals will follow
this pattern. The sample values of the signals may start at an arbitrary
initial sample number 0, and the current sample values refer to the nth
sample after this. If these signal arguments are multiplied by the sampling
period T , we get the actual time t that the sample value corresponds to,
since t = 0T is the initial time and t = nT is the actual time at the nth
sample. This will facilitate going back and forth between the analog time
t and the discrete time nT to which the nth sample corresponds.

Finally, for the coefficients it is standard to drop the negative sign on the
subscripts. Thus the a coefficient goes to a0, and the b–1 coefficient goes
to b1 . The modified DSP equation is shown in Equation 5.2.

y(n) = b1y(n − 1) + b2y(n − 2) + ⋅ ⋅ ⋅ + bMy(n − M)
(Equation 5.2)+ a0x(n) + a1x(n − 1) + ⋅ ⋅ ⋅ + aNx(n − N)

Note also that the uncapitalized integers m and n have been replaced by
their capitalized letters to avoid confusion with the integer value n, which
now stands for the sample number and gives the actual sample time as
nT , as shown in Chapter 2. Also note that Equations 5.1 and 5.2 say
exactly the same thing; just the notation has been changed. Example 5.1
illustrates this modification of the general DSP equation to the new form
used in this and almost all texts.

Example 5.1. The modification of a DSP equation to the more
standard form

Problem: Convert the following equation into the modified or standard
form.

y = 3y−1 − 5y−2 + 0.5x − 0.75x−1 + 0.25x−2

56

Digital Signal Processing

Solution: First we will let the current sample be designated with the n
subscript, as shown here.

yn = 3yn−1 − 5yn−2 + 0.5xn − 0.75xn−1 + 0.25xn−2

Next let the subscripts be used as arguments of the input and output signals.

y(n) = 3y(n − 1) − 5y(n − 2) + 0.5x(n) − 0.75x(n − 1) + 0.25x(n − 2)

The preceding equation is in the more standard form, and it still says the
same thing as the original equation. But now if the arguments, which
represent sample numbers, are multiplied by the sample period, we have
the product representing the actual sample times. Also note that in the
preceding equation 3 is b1, –0.75 is a1, and so on.

In order to show explicitly how the subscripts of the coefficients are
handled to get the modified and more standard form of the general DSP
equation, we leave them as arbitrary coefficients in Example 5.2. This
practice is useful in understanding the difference equations in this and
other texts, as well as DSP programs that list the computed coefficients
alongside the a or b coefficients they represent.

Example 5.2. Getting the standard form of the DSP equation with
arbitrary coefficients

Problem: Given the following digital filter equation, modify it so that it is
in standard form.

y = b−1y−1 + b−2y−2 + ax + a−1x−1 + a−2x−2

Solution: First we let the subscript n and not 0 represent the current
sample number and then use the subscripts for the signals as arguments
of the signals. This gives the following equation.

y(n) = b−1y(n − 1) + b−2y(n − 2) + ax(n) + a−1x(n − 1) + a−2x(n − 2)

Finally we change the signs on the subscripts of the coefficients so that
they correspond to the numbers being subtracted from n in the argu-
ments. This gives the following equation.

y(n) = b1y(n − 1) + b2y(n − 2) + a0x(n) + a1x(n − 1) + a2x(n − 2)

57

The z-Transform of the DSP Equation

In the modified or standard form of the DSP equation, you should have
the following pattern:

◗ The sampled input and output signals should have no subscripts
to show which sample number they correspond to. Instead, the
sample number is in the argument of the signal.

◗ As the sample number n is used to represent the current sam-
ple, the equation should solve for y(n) on the left, since the
equation is used to solve for the current computer or DSP chip
output given the current input and previous inputs and outputs.

◗ The subscripts of the coefficients multiplying the input and out-
put samples have coefficients that are the integers subtracted
from the current sample number in the signal arguments.

◗ The coefficient of the y(n) term on the left, b0, is always 1, since
the equation could be divided by this value without changing
the equation.

Taking the z-Transform of the Modified DSP Equation

The equation given by Equation 5.1 or its modified equivalent is called a
difference equation, specifically an input-output difference equation,
because it is made up of sums and differences of samples of signals. The
difference equation is handy to see how to code the sampled input and
output signals to get the current output signal, but it is hard to actually
solve for the output mathematically in closed form. To help do this, we
will use z-transforms of the signals in the difference equation.

By using the property of z-transforms given in Chapter 4, we can get an
algebraic equation, instead of one involving the shifted input and output
values at discrete times. The shifting property is repeated in the following
equation, with F (z) being the z-transform of f (n).

Z[f (n − k)] = z−kZ[f (n)] = z−kF (z)

Equation 5.3 shows this property applied to Equation 5.2, with Y(z) and
X(z) being the symbolic representations of the z-transforms of y(n) and
x(n) respectively.

Y(z) = b1Y(z)z−1 + b2Y(z)z−2 + ⋅ ⋅ ⋅ + bMY(z)z−M

+ a0X (z) + a1X (z)z−1 + ⋅ ⋅ ⋅ + aNX(z)z−N (Equation 5.3)

58

Digital Signal Processing

Example 5.3. Taking the z-transform of a difference equation for a
DSP system

Problem: Given the following difference equation, obtain the z-trans-
formed equation by z-transforming all the signals in the equation.

y(n) = 0.5y(n − 1) + 0.5x(n) − 0.25x(n − 1)

Solution: By using the shifting property of z-transform, the preceding
equation becomes the following equation.

Y(z) = 0.5Y(z)z−1 + 0.5X(z) − 0.25X (z)z−1

 5.2 The Transfer Function of a Digital Filter

The reason for using z-transforms is that Equation 5.3 now can be solved
for Y(z), the z-transform of the output DSP signal, in terms of X(z), the
z-transform of the input signal using algebra. This equation can then be
solved for the z-transform of the output. This will lead to the mathematical
description of a digital filter or any DSP system represented by the
difference equation. The following equations show the steps to solve for
the z-transform of the output, with the solution given by Equation 5.4.

Y(z) = Y(z)[b1z
−1 + b2z

−2 + ⋅ ⋅ ⋅ + bMz−M] + X (z)[a0 + a1z
−1 + ⋅ ⋅ ⋅ + aNz−N]

Y(z)[1 − b1z
−1 + b2z

−2 + ⋅ ⋅ ⋅ + bM] = X (z)[a0 + a1z
−1 + ⋅ ⋅ ⋅ + aNz−N]

Y(z) =
a0 + a1z

−1 + ⋅ ⋅ ⋅ + aNz−N

1 − b1z
−1 − b2z

−2 − ⋅ ⋅ ⋅ −bMz−M X(z)
(Equation 5.4)

The rational function of z multiplying the z-transform of the input X(z)
is the mathematical representation of the DSP system, called T(z) or the
transfer function, since if you multiply it by the input z-transform, you get
the output z-transform. In subsequent chapters this representation of the
DSP system will be used to analyze, design, and represent digital filters.

Example 5.4. Finding the transfer function of a lowpass digital
filter

Problem: From Chapter 1 we have a crude lowpass digital filter given by

59

The z-Transform of the DSP Equation

the following equation. We would like to get the transfer function T (z)
of this lowpass filter.

y = 0.5x + 0.5x−1

Solution: The modified DSP equation, as described in the preceding
section, is given in the following equation and then the z-transform of this
equation is taken.

y(n) = 0.5x(n) + 0.5x(n − 1)

The z-transform of the preceding equation is given in the following
equation.

Y(z) = 0.5X (z) + 0.5z−1X (z)

This equation can be easily solved for Y(z) in terms of X(z) to get the
following equation.

Y(z) = (0.5 + 0.5z−1)X (z)

Thus it can be seen that the transfer function T (z) of the lowpass digital
filter is given by the preceding equation after solving for Y(z) over X(z).

T (z) = 0.5 + 0.5z−1

Usually the transfer function is put in a more standard form by using
algebra to eliminate negative exponents of z, as is shown in Example 5.5.

Example 5.5. Finding the transfer function of a more complex
digital filter

Problem: The difference equation of a digital filter is given in the following
equation. We want to find the mathematical description of this filter T (z).

y(n) = 1.85y(n − 1) − 0.868y(n − 2) + 0.00477x(n − 1) + 0.00455x(n − 2)

Solution: Taking the z-transform of all the signals in the equation, we get
the following equation.

Y(z) = Y(z)[1.85z−1 − 0.868z−2] + X(z)[0.00477z−1 + 0.00455z−2]

60

Digital Signal Processing

Solving this for T (z) gives the following equation.

T (z) =
Y(z)
X (z) =

0.00477z−1 + 0.00455z−2

1 − 1.85z−1 + 0.868z−2

If the numerator and denominator of the preceding equation are both
multiplied by z2, we get the following equation for T (z), which is actually
the same as the preceding equation.

T (z) =
0.00477z + 0.00455
z2 − 1.85z + 0.868

As we have shown, the z-transform allows us to get a mathematical
description called T (z) or z-transfer function of a digital filter or DSP
system from the difference equation related to the coding. This transfer
function will be solved by the methods in Chapter 6 to give the frequency
response or gain of the digital filter. The methods used here could also
be used in reverse order to get the difference equation to code. This is
illustrated in Example 5.6. This procedure will be used in subsequent
chapters when we determine the digital filter transfer function to meet
the graphical specifications. The filter will obviously be given as T (z),
which is the digital filter expressed mathematically.

Example 5.6. Finding the difference equation from T(z)

Problem: Given the following math description of a digital filter, determine
the corresponding difference equation that could easily be coded.

T (z) =
0.25z2 − 0.5z + 0.25

z2 − 0.95z + 0.75

Solution: First let’s divide numerator and denominator by z2, as shown in
the following equation.

T (z) =
Y(z)
X (z) =

0.25 − 0.5z−1 + 0.25z−2

1 − 0.95z−1 + 0.75z−2

Then cross-multiply the preceding equation to get the following equation.

Y(z)[1 − 0.95z−1 + 0.75z−2] = X (z)[0.25 − 0.5z−1 + 0.75z−2]

61

The z-Transform of the DSP Equation

Now multiplying through each term in the brackets gives the following
equation.

Y(z) = 0.95Y(z)z−1 − 0.75Y(z)z−2 + 0.25X (z) − 0.5X (z)z−1 + 0.75X(z)z−2

Finally the inverse z-transform of the signals can be taken by applying the
shifting property in reverse order.

y(n) = 0.95y(n − 1) − 0.75y(n − 2) + 0.25x(n) − 0.5x(n − 1) + 0.25x(n − 2)

 Summary

Several important things done in this chapter will be necessary for digital
filter analysis and design in following chapters. The first thing was to
rewrite the general DSP equation in a more mathematical and standard
form, as given by Equation 5.2. The second thing done was to use the
z-transform property in Chapter 4 on the DSP equation given in Equation
5.2. Finally this z-transformed equation was solved to give the transform
of the output over the input, which is the transfer function T (z). Since
multiplying the transform of the input by T (z) gives the transform of the
output, it must be a mathematical description of the DSP system. Using
this mathematical description, we will be able to analyze, design, and
represent digital filters in subsequent chapters.

 Self-Test

1. Given the simple difference equation for digital integration given in
Chapter 1 and repeated here, convert it into the more mathematical
and standard modified difference equation using the steps given in
Section 5.1.

y = y−1 + T x

2. Using the steps given in Section 5.1, convert the following difference
equation, given in the form of Chapter 1, into the more mathematical
and standard form.

y = a−1y−1 + bx + b−1x−1

 3. Given the following difference equation of a digital filter, find the
transfer function T (z).

62

Digital Signal Processing

y(n) = −2y(n − 1) + 3x(n) + x(n − 1)

 4. Given the following difference equation of a digital filter, find the
transfer function T (z).

2y(n) + y(n − 1) = −3y(n − 2) + 4x(n) − 2x(n − 2)

 5. Given the following transfer function T(z) of a DSP system, write the
difference equation.

T (z) =
3 + 2z−1 + z−2

1 − 4z−1 + 5z−2

 6. Given the following transfer function for T (z) of a digital filter, write
the difference equation.

T (z) =
a0 + a1z

−1

1 − b1z
−1

 7. Determine the difference equation from the following transfer
function T (z).

T (z) =
3z + 5

2z2 − 5z + 4

 8. Rewrite the transfer function in Problem 4 so that it has no negative
exponents.

 9. Rewrite the transfer function in Problem 5 so that it has no negative
exponents.

10. Write the difference equation corresponding to the transfer function
T (z) determined in Problem 8.

11. Write the difference equation corresponding to the transfer function
T (z) determined in Problem 9.

12. Determine the difference equation for the following highpass digital
filter, with the latest output sample being y(n).

63

The z-Transform of the DSP Equation

T (z) =
0.8(z − 1)

z − 0.6

13. Determine the difference equation for the following lowpass digital
filter, with the latest output sample being y(n).

T (z) =
0.2(z + 1)

z − 0.6

14. Determine the difference equation for the following second-order
Butterworth digital filter, with the latest output sample being y(n + 2).

T (z) =
0.04414(z + 1)(z + 1)
z2 − 1.324z + 0.5006

 Problems

 1. Given the following simple difference equation for digital integra-
tion, convert it into the more mathematical and standard difference
equation using the steps given in Section 5.1.

y = y−1 +
T
2

(x + x−1)

 2. Using the steps given in Section 5.1, convert the following difference
equation into the more mathematical and standard form.

y = a−1y−1 + a−2y−2 + b−1x−1

 3. Given the following difference equation of a digital filter, find the
transfer function T (z).

y(n) = −4y(n − 1) − 2y(n − 2) + 7x(n)

 4. Given the following difference equation of a digital filter, find the
transfer function T (z).

−3y(n − 1) + y(n) = 2x(n − 1) − y(n − 2)
 5. Given the following transfer function T (z) of a DSP system, write the

difference equation.

64

Digital Signal Processing

T (z) =
4 − 2z−1 + 3z−2

1 − 6z−1 − 3z−2

 6. Given the following transfer function for T (z) of a digital filter, write
the difference equation.

T (z) =
2a0 + 0.5a1z

−1

1 − b1z
−1 − b2z

−2

 7. Determine the difference equation from the following transfer function.

T (z) =
5z + 2

z2 − 6z − 1

 8. Rewrite the transfer function in Problem 4 so that it has no negative
exponents.

 9. Rewrite the transfer function in Problem 5 so that it has no negative
exponents.

10. Write the difference equation corresponding to the transfer function
T (z) determined in Problem 8.

11. Write the difference equation corresponding to the transfer function
T (z) determined in Problem 9.

12. Determine the difference equation for the following highpass digital
filter, with the latest output sample being y(n).

T (z) =
0.677(z − 1)

z − 0.987

13. Determine the difference equation for the following lowpass digital
filter, with the latest output sample being y(n).

T (z) =
0.4(z + 1)
z − 0.878

14. Determine the difference equation for the following second-order
digital filter, with the latest output sample being y(n + 2).

65

The z-Transform of the DSP Equation

T (z) =
0.124(z + 1)(z + 1)
z2 − 15.28z + 0.878

 Anwsers to Self-Test

 1. y(n) = y(n − 1) + T x(n)

 2. y(n) = a1y(n − 1) + b0x(n) + b1x(n − 1)

 3. T (z) =
3 + z−1

1 + 2z−1

 4. T (z) =
4 − 2z−2

2 + z−1 + 3z−2

 5. y(n) = 4y(n – 1) – 5y(n – 2) + 3x(n) +2x(n – 1) + x(n – 2)

 6. y(n) = b1y(n − 1) + a0x(n) + a1x(n − 1)

 7. y(n) = 2.5y(n – 1) – 2y(n – 2) + 1.5x(n – 1) + 2.5x(n – 2)

 8. T (z) =
4z2 − 2

2z2 + z + 3

 9. T (z) +
3z2 + 2z + 1
z2 − 4z + 5

10. y(n + 2) = – 0.5y(n + 1) – 1.5y(n) + 2x(n + 2) – x(n)

11. y(n + 2) = 4y(n + 1) – 5y(n) + 3x(n + 2) + 2x(n + 1) + x(n)

12. y(n) = 0.6y(n – 1) + 0.8x(n) – 0.8x(n – 1)

13. y(n) = 0.6y(n – 1) + 0.2x(n) + 0.2x(n – 1)

14. y(n + 2) = 1.324y(n + 1) – 0.5006y(n) + 0.04414[x(n + 2) + 2x(n + 1)
+ x(n)]

66

Digital Signal Processing

Frequency Response of Digit al Filters and DSP Syst ems

 Introduction

In this chapter we learn to determine the frequency response of any DSP
system from the system transfer function T (z). By doing this we will be
able to determine if a digital filter meets the requirements of the
graphical filter specifications of Chapter 3 and how well it meets the
specifications. This analysis needs to be done on any DSP system to check
the design, and it also gives a deeper insight into digital filters and how
they work. In order to obtain the frequency response, we will show
graphically and mathematically how the z-transform variable is related to
the Laplace transform variable of continuous signals, and how a simple
mathematical substitution for this variable gives the frequency response.
In order to make the computation easier on most calculators and some
mathematical programs, we will introduce the Euler equation. If the
student has not used Laplace transforms in analog signal processing or
analog control classes, the student can still use the resulting trigonometric
substitution into T (z) to obtain the frequency result.

 6.1 The Euler Equation from Trigonometry

Many calculators and mathematical programs cannot compute the ex-
pression e

jΩ, where j is the square root of –1 and Ω is an angle in radians.
The computation will occur frequently in finding the frequency response

Frequency Response of Digital Filters
and DSP Systems

 c h a p t e r 6

67

of digital filters, and the reason will soon be shown. In order to ease the
computation burden, the Euler equation given in Equation 6.1 can be
used.

AejΩ = Acos(Ω) + jAsin(Ω) (Equation 6.1)

The expression on the right is just a complex number in rectangular form
with magnitude A and phase Ω. Thus the expression on the left must be
a complex number in polar form with magnitude A and angle Ω. This
relationship is shown in Figure 6.1.

The student may be used to seeing complex numbers in polar form given
as A∠Ω, but this form is just shorthand mathematical symbols saying
magnitude A at an angle of Ω, not real mathematics. You could double
the A value to express a complex number twice as big, but you cannot
use this shorthand math to take the integral or derivative of this complex
number if it were variable. The correct mathematical expression of a
complex number in polar form with magnitude A at an angle of Ω is given
on the left side of Equation 6.1. As all calculators and programming
languages and mathematical applications programs can evaluate the
expression on the right, it will be used in the rest of this text in evaluating
the frequency response of digital systems. Example 6.1 gives an example
of using the Euler equation.

68

real axis

imaginary axis

Α

Ω

Acos(

Asin(

ΩAe
j

Ω

Ω)

Ω)

Figure 6.1. Exponential and rectangular forms of a complex number

Digital Signal Processing

Example 6.1. Using the Euler equation

Problem: Find the numeric value for 7e–1.2j.

Solution: Using Equation 6.1, we have the following result.

7e–1.2j = 7cos(–1.2) + j7sin(–1.2)

= 7cos(1.2) – j sin(1.2)

= 2.54 – j6.52

= 7.00 ∠–1.2 rad.

 6.2 Frequency Scaling

We will also see when we try to compute the frequency response of digital
filters that the analog input signal frequencies w used in the graphical
specifications will always be multiplied by the sampling period T . It is
usual practice in industry to define Ω as wT . This is just a new symbol that
represents the input signal frequency multiplied by the sampling period
T , called the scaled frequency. When this new symbol is used, the
frequency response of digital filters inherently goes from 0 to π rad/s
before repeating, as shown in Equation 6.2. Remember we showed that
any DSP system has a frequency response that repeats at half the sampling
frequency ws/2.

Ωs

2
 =

wsT
2

=
1
2

(2π
T

)

= π (Equation 6.2)

Almost all texts and technical articles will show DSP frequency responses
plotted going from 0 to π, since they are in terms of wT = Ω. In order to
find out what the digital filter or DSP system does to the input frequencies
from the plots, just divide the plot Ω by T to obtain the specific input
frequency of the DSP system. Example 6.2 illustrates how to convert

69

Frequency Response of Digital Filters and DSP Systems

between the actual input or output frequency in radians and the
parameter Ω usually used in texts and industry.

Example 6.2. Converting between the scaled frequency Ω and
the actual frequency

Problem: A graphical specification of a digital filter gives its gain at Ω = 0.5
as –6 dB with T = 0.02. Find the value of the input or output frequency
at which the filter has this gain.

Solution: Since wT = Ω, we have

w = Ω/T

= 0.5/.02 = 10 rad/s

 6.3 Computing the DSP Frequency Response

In order to compute the frequency response of any DSP system, we must
first determine the relationship of the z-transform variable z and the
Laplace variable s. Once this is done, computing the frequency response
is easy, since from analog filtering courses we know that replacing s by jw
in an analog filter transfer function gives the frequency response. The
relationship is easy to establish by remembering that if an analog
continuous time signal is delayed by t = T , then its Laplace transform is
multiplied by e–sT . This Laplace transform property is shown by the
following equation, where L signifies the Laplace transform of the term
inside the brackets. This is called the shifting property of Laplace
transforms.

L[x(t − T)] = e−sTL[x(t)]

In Chapter 4 (Section 4.4) we also showed that when a discrete-time signal
is delayed by T , then its z-transform is multiplied by z–1. The equation for
the shifting property of the z-transform is given in the following equation.

Z[x(nT − T)] = Z[x(n − 1)] = z−1Z[x(n)]

As a discrete-time signal can be thought of as a continuous time signal

70

Digital Signal Processing

with a signal value of zero between samples, we have the relationship given
by Equation 6.3.

z−1 = e−sT → z = esT (Equation 6.3)

This is a very important relationship to remember.

With the relationship given in Equation 6.3, we could actually write the
Laplace transfer function of any DSP system by replacing z with esT in T (z).
But more important, we can get the frequency response by letting s = jw, so
that z = ejwT in T (z) everywhere z appears. Since z appears everywhere in the
z-transfer function and z = ejwT , you can see why just for notational conve-
nience wT = Ω is used as shown in Section 6.2, so that we have

z = ejΩ = cos(Ω) + j sin(Ω)

after using the Euler equation given in Section 6.1.

We now have the method of finding the frequency response magnitude
(gain) as shown in Equation 6.4.

gain = |T (z)|z = cos(Ω) + jsin(Ω)

gaindB = 20log(|T (z)|z = cos(Ω) + jsin(Ω)) (Equation 6.4)

In Equation 6.4, Ω = wT , where T is the period between samples of the
input or output. Since in digital filtering we are most interested in the
magnitude of the frequency response, as stated in Chapter 3, we need to
take the magnitude, as the absolute value symbols indicate.

Equation 6.4 shows that the frequency response of all DSP systems repeat
every ws, since Ωs is given by

Ωs = (2π/T)T = 2π

and the trigonometric functions in Equation 6.4 repeat every 2π. Thus the
value of z is unchanged in Equation 6.4 if any frequency is increased by
integer multiples of the sampling frequency, as was stated in Chapter 2.

Equation 6.4 looks like a pretty easy equation to solve for the gain as a
function of Ω, but on a calculator even a few steps soon become tiresome
finding the gain for just one value of Ω. It is usually programmed on a

71

Frequency Response of Digital Filters and DSP Systems

calculator, or a math package such Mathcad is used. In Example 6.3,
Equation 6.4 is used to find the gain of a simple lowpass filter showing
the steps needed if a calculator is used. In Example 6.4 we show how to
calculate the gain and plot the gain for several frequencies using
Mathcad. Finally, in Example 6.5, the gain for a filter that uses both input
and output samples is calculated at one frequency.

Example 6.3. Finding the gain for one value of input frequency
using a calculator

Problem: Find the magnitude of the frequency response (gain) of the
following lowpass filter by using Equation 6.4, for w = 50 rad/s with the
sample period T = 0.01 s.

y(n) = 0.5x(n) + 0.5x(n – 1)

Solution: In Chapter 5, the z-transfer function was shown to be

T (z) =
Y(z)
X (z)

which can be obtained from the filter difference equation by taking the
z-transform both sides and solving for the ratio, as is done in the following
equations.

Y(z) = 0.5X(z) + 0.5z–1 X(z)

T (z) = 0.5 + 0.5 z–1

Using the preceding equation and the values for T and w in Equation 6.4
gives the gain as

gain = |T (ejΩ) = 0.5 + 0.5[cos(Ω) + j sin(Ω)]–1|

Using the Euler equation, it is easy to see that

[cos(Ω) + j sin(Ω)]–1 = cos(Ω) – j sin(Ω)

since this just changes ejΩ to e−jΩ and the sine of a negative angle is just
the negative of the sine of the corresponding positive angle. Thus we have
the final answer for the gain after using the values for w and T as shown
in the following equations.

72

Digital Signal Processing

Ω = wT = 0.5

gain = |0.5 +0.5cos(0.5) – j0.5sin(0.5)|

= |(0.5 + 0.439) – j(0.24)|

= √(0.5 + 0.439)2 + (0.24)2

= 0.969

Let’s look at what has been done in Example 6.3. We have computed the
gain of a digital filter (it could have been any DSP system) using the differ-
ence equation of the filter that would be coded on a computer or DSP chip.
The gain was computed for the frequency of 50 rad/s at a sample period of
0.01 s. What this means is that for any input sinusoidal signal or sinusoidal
component of a signal going into the ADC with a frequency of 50 rad/s, the
output amplitude of the sinusoid at the same frequency would be 0.969
times as great coming out of the DAC. By solving for many input frequency
points, we can determine the effect of the filter on any input frequency.
Note that if the sample time T is changed, Equation 6.4 and Example 6.3
show that new and different values of gain are obtained. Thus the frequency
response of a digital filter varies with the sample period used.

Example 6.4. Using Mathcad to calculate and plot the gain in
Example 6.3

Problem: The filter difference equation and sampling period are the same
as in Example 6.3, but now we would like to draw the gain curve by
computing enough gain values at different frequencies so that a plot of
the gain can be drawn.

Solution:

73

Frequency Response of Digital Filters and DSP Systems

Example 6.5. Calculating the gain at one frequency for a filter
with a and b coefficients

Problem: Given the following digital filter equation, find its gain for an
input frequency or output frequency of w = 100 rad/s, for T = 0.0126 s
between input samples.

y(n) = 0.7y(n − 1) + x(n)

Solution: Taking the z-transform of both sides of the preceding equation
gives

Y(z) = 0.7z−1Y(z) + X (z)

Solving this for T (z), the transfer function of the digital filter gives

T (z) =
1

1 − 0.7z−1

Using this equation in Equation 6.4 gives the following equation for the
gain after using the values for w and T .

Ω = wT = 1.26

74

0 200 400 600
40

20

0

gaindBn

w
n

Figure 6.2. Gain plot of lowpass filter

Digital Signal Processing

gain =

1
1 − 0.7[cos(1.26) − jsin(1.26)]

=

1
1 − 0.7(0.306 − j0.952)

=

1
1 − 0.212 + j0.666

=

1
0.786 + j0.666

= 0.939

 Summary

In Chapter 6 we learned how to find the gain, which is the magnitude of
the frequency response, of any DSP system, given its mathematical
description T (z). The method is given in Equation 6.4 and illustrated in
Examples 6.3, 6.4, and 6.5. In order to make the notation and computa-
tions easier, Equation 6.1 shows the conversion from the polar or
exponential form of a complex number, which occurs naturally when
finding the frequency responses of DSP systems, to the more familiar
rectangular form. Also the definition of Ω as wT was introduced, since it
is used a lot in industry and other texts, and simplifies the notation. Using
these last two formulas, it is easy to compute the DSP system gain in terms
of the input or output frequency w, given the sampling period T , by using
Equation 6.4.

 Self-Test

1. For the following complex numbers in exponential form, determine
their values in rectangular coordinates.

(a) 3e–4j

(b) –8e0.5j

2. For the following input frequencies, determine the corresponding
scaled frequency Ω for the given sample period T .

75

Frequency Response of Digital Filters and DSP Systems

(a) w = 100 rad/s, T = 0.02 s

(b) w = 2000 rad/s, T = 0.0003 s

3. For the following difference equation of a digital filter, determine the
gain at w = 6 rad/s with T = 0.05 s.

y(n) = 0.905y(n −1) + 0.119x(n)

4. For the following difference equation of a digital filter, determine the
gain at w = 4 rad/s with T = 0.1 s.

y(n + 1) + 0.6y(n) + 10x(n + 1) − 10x(n)

 5. A first-order highpass digital filter transfer function is given here for
T = 0.01 s. Find the frequency response magnitude (gain in dB) at
50 and 100 rad/s.

T (z) =
0.8(z − 1)

z − 0.6

 6. Determine the gain in dB at 5 and 20 rad/s for the digital filter with
the following transfer function with the sampling period T = 0.05 s.
Also state if it is a highpass or lowpass digital filter.

T (z) =
0.2(z + 1)

z − 0.6

 7. Use Mathcad to plot the gain of the digital filter with the following
transfer function T (z) for a sampling period of T = 0.005. The filter
is a second-order Butterworth with the corner frequency at 100 rad/s.
Plot the gain versus frequency in rad/s.

T (z) =
0.04414(z + 1)(z + 1)
z2 − 1.324z + 0.5006

 8. Repeat Problem 7 except plot the gain in dB and the frequency in
terms of Ω = wT .

 9. Determine the gain in dB at 2 rad/s and 37 rad/s for the digital filter

76

Digital Signal Processing

with the following transfer function with the sampling period T = 0.02
s. Also state if it is a highpass or lowpass filter.

T (z) =
0.8333(z − 1)

z − 0.667

10. Determine the gain in dB at 2 rad/s and 37 rad/s for the digital filter with
the following transfer function with the sampling period T = 0.01 s. Also
state if it is a highpass or lowpass filter.

T (z) =
0.9091(z − 1)

z − 0.8182

11. For the digital filter with the transfer function in Problem 5, determine
the gain in dB at 100 rad/s if the sampling period T = 0.005 s.

12. For the digital filter with the transfer function in Problem 10, determine
the gain in dB at 2 rad/s if the sampling period T = 0.185 s.

13. For the following difference equation of a digital filter, use Mathcad
to compute the gains at w = 3, 6, 12, and 24 rad/s for T = 0.025 s.

y(n + 1) = 0.839y(n) + 0.0805x(n + 1) + 0.0805x(n)

14. For the following equation of a digital filter, use Mathcad to compute
the gains at w = 2, 4, 8, 16 rad/s for T = 0.08 s.

y(n + 1) = 0.667y(n) + 4.167x(n + 1) − 4.167x(n)

15. For the following first-order lowpass filter T (z), use Mathcad to
compute the gains at w = 10, 20, 40, 80, 160 rad/s for T = 0.02 s.

T (z) =
0.4(z + 1)

z − 0.6

16. For the following first-order digital filter T(z), use Mathcad to plot the gain
in dB and state if the filter is a highpass or lowpass filter for T = 0.01 s.

T (z) =
0.677(z − 1)

z − 0.333
77

Frequency Response of Digital Filters and DSP Systems

 Problems

 1. For the following complex numbers in exponential form, determine
their values in rectangular coordinates.

(a) –7e–0.5j

(b) 0.25e4j

 2. For the following input frequencies, determine the corresponding
scaled frequency Ω for the given sample period T .

(a) w = 33.5 rad/s, T = 0.005 s

(b) w = 400 rad/s, T = 2.5 s

 3. For the following difference equation of a digital filter, determine the
gain at w = 12 rad/s with T = 0.007 s.

y(n + 1) = 0.915y(n) + 0.5x(n + 1)

 4. For the following difference equation of a digital filter, determine the
gain at w = 45 rad/s with T = 0.02 s.

y(n + 2) = 0.85y(n + 1) + 5x(n + 1) + x(n)

 5. A first-order highpass digital filter transfer function is given here for
T = 0.005 s. Find the frequency response magnitude (gain in dB) at
75 and 125 rad/s.

T (z) =
0.75(z − 1)

z − 0.7

 6. Determine the gain in dB at 10 and 30 rad/s for the digital filter with
the following transfer function with the sampling period T = 0.001.
Also state if it is a highpass or lowpass digital filter.

T (z) =
0.5(z − 1)

z − 0.6

 7. Use Mathcad to plot the gain of the digital filter with the following

78

Digital Signal Processing

transfer function T (z) for a sampling period of T = 0.002 s. The filter
is a second-order Chebyshev with the corner frequency at 100 rad/s.
Plot the gain versus frequency in rad/s.

T (z) =
0.00661(z + 1)(z + 1)
z2 − 1.853z + 0.8796

 8. Repeat Problem 7 except plot the gain in dB and the frequency in
terms of Ω = wT .

 9. Determine the gain in dB at 15 rad/s and 30 rad/s for the digital
filter with the following transfer function with the sampling period T
= 0.01 s. Also state if it is a highpass or lowpass filter.

T (z) =
0.667(z − 1)

z − 0.333

10. Determine the gain in dB at 15 rad/s and 30 rad/s for the digital
filter with the following transfer function with the sampling period T
= 0.01 s. Also state if it is a highpass or lowpass filter.

T (z) =
0.0476(z + 1)

z − 0.905

11. For the digital filter with the transfer function in Problem 5,
determine the gain in dB at 150 rad/s if the sampling period T =
0.0025 s.

12. For the digital filter with the transfer function in Problem 10, determine
the gain in dB at 5 rad/s if the sampling period T = 0.005 s.

 Answers to Self-Test

1a. –1.961 + 2.270j

1b. –7.021 – 3.835j

2a. 2

79

Frequency Response of Digital Filters and DSP Systems

2b. 0.6

3. 0.397

4. 7.8

5. –2.9 dB and –0.83 dB respectively

6. –1 dB, –8 dB, lowpass

7. w = 100 rad/s; gain dB = –3.2; w = 200 rad/s; gain dB = –13.8

 8. w = 100 rad/s, Ω = 0.5; w = 200 rad/s, Ω = 1.0

 9. –20 dB, –1 dB, highpass

10. –20dB, –1dB, highpass

11. –2.9 dB

12. –1 dB

13. 0.92, 0.75, 0.50, 0.27

14. 1.86, 3.14, 4.27, 4.83

15. 1.86, 1.55, 1.02, 0.47, 0.01

16. highpass, corner frequency at w = 100 rad/s

80

Digital Signal Processing

IIR Filt er DesignI IR Filt er Des ign

 Introduction

In this chapter we show how to design one of the two types of digital filters:
the Infinite Impulse Response (IIR) filter. This digital filter has a gain
curve that approximates the filter characteristics of a corresponding
analog filter. There are four basic analog filter approximations them-
selves, which are reviewed in Section 7.1. One of the best ways to obtain
the digital filter approximations to analog filters is to develop a mathe-
matical formula that shows how to convert from T (s), the mathematical
description of the analog filter using Laplace transforms, to T (z), the
description of the digital filter. Then, using the methods in Chapter 5 in
reverse order, obtain the coding for a corresponding IIR filter.

IIR filters are used in many areas of technology, some of which are listed
here. Application 1 at the end of this chapter shows how to design,
analyze, and determine the difference equation to code as well as a
flowchart to illustrate the coding procedure. Because IIR filters approxi-
mate the gain and phase response of analog filters, they are used primarily
where analog filters are used. However, implementation on a processor
allows much more flexibility, eliminates degradation, and produces a
specific accuracy based on the number of bits used, as well as perfect filter
reproducibility. Some of the applications areas are for sound and music
enhancement, telecommunications, video image processing, biomedical
instrumentation, and radar and sonar processing. (Digital control systems
use IIR filters as compensators, but the IIR filter design methods in this

IIR Filter Design

 c h a p t e r 7

81

and any digital filter text are not appropriate when applied to control
systems with feedback.)

Unfortunately, there are many mathematical formulas that approximate
an analog filter with an IIR filter, since a computer or DSP chip can only
do addition, subtraction, multiplication, and division; everything else is
an approximation. There are many ways to approximate a function like
a filter, so there are many ways to get IIR filters. Some have the advantage
of simplicity, and others are more accurate for the same number of
coefficients. We will look at three approximation methods in Sections 7.2,
7.3, and 7.4. These formulas will start with the Laplace transform T (s) of
the analog filter that is to be replaced by a digital IIR filter, then use
algebra and the relationship between the z-transform and the Laplace
transform to obtain the IIR filter that has the same approximate outputs
at the sample times. Remember, there is one fundamental difference that
cannot be approximated away: The IIR filter will have its gain start to
repeat the lower frequency gain above half the sampling frequency! Most
gain plots of digital filters go from zero or some low frequency up to
wT = Ω = π.

 7.1 Review of Four Basic Analog Filter Approximations

Many types of analog filters can be built. Any one could be a lowpass,
highpass, bandpass, or a stopband filter like those discussed in Chapter
3. However, because of the nature of electrical circuits used to build
analog filters, any of these filter types can be divided into four basic
analog approximations that meet the graphical specification. These
approximations are based on where the gain curve has ripples or
deviations from a smoothly varying curve. In the first approximation,
called the Butterworth, there are no ripples in any passband or stopband.
Thus the digital IIR filter has no ripples in it either. The general gain
curve is given in Figure 7.1 for a lowpass filter specification. Similar
graphical specifications could be drawn for highpass, bandpass, or
bandstop filters. Notice in Figure 7.1 that the important characteristic is
that the gain curve smoothly varies in the passband and the stopband up
to half the sampling frequency.

The second analog filter approximation to an ideal analog graphical filter
specification is the Chebyshev, which has ripples in the passbands, but has
a smoothly decreasing gain curve in the stopbands. In Figure 7.2 a lowpass

82

Digital Signal Processing

IIR filter is used to illustrate a Chebyshev approximation. Similar gain
curves could be drawn for a highpass, bandpass, or bandstop filter. Notice
in Figure 7.2 that the gain curve has ripple in the passband, because the
gain increases before it decreases. For higher-order filters the ripple is
more obvious, with several cycles of increasing and decreasing gain in the
passband. This is an unwanted deviation from the ideal analog filter. How-
ever, as the Chebyshev filter will have a narrower transition band between
the stop and passbands, it trades off ripple in the passband for a gain curve
that more closely approximates the ideal graphical specification by having
a narrower transition band than the Butterworth filter.

The third analog filter approximation to the ideal analog graphical filter
specification is the Inverse Chebyshev, which has no ripple in the
passbands, but has ripple in the stopbands. In Figure 7.3, an IIR bandpass
filter is used to illustrate a digital approximation to an analog Inverse
Chebyshev bandpass filter. Again, the ripples are an unwanted deviation
from the ideal graphical specifications, but like the Chebyshev approxi-
mation it has a narrower transition band than the Butterworth. Notice in
Figure 7.3 that the passband has no ripples but there are ripples in the

83

0.0

–12.0

–24.0

–36.0

–48.0

–60.0

G
ai

n
(d

B
)

Frequency

ws
2

Figure 7.1 Butterworth lowpass IIR filter

IIR Filter Design

stopbands. Many times this ripple in the stopbands is insignificant if the
peaks of the ripples are under the stopband gain specification. This is in
contrast to the Chebyshev filter, where the ripple in the passband is a
deviation from the desired gain curve.

The fourth type of analog filter approximation to the ideal analog
graphical specifications is the Cauer, which has ripple in the passbands
and the stopbands. The reason this ripple is accepted is that the Cauer
filter has narrower transition bands than any of the other three approxi-
mations. Figure 7.4 illustrates the digital IIR graphical specification for a
bandstop filter. Notice the ripple in the stopband and the passbands. If a
highly selective filter is desired and some ripple in the gain curve is
acceptable, then the Cauer filter is the best choice.

 7.2 The Impulse Invariant IIR Filter

One way to determine a digital IIR filter to approximate an analog filter
of any of the four basic approximations given in Section 7.1, is the

84

0.0

–12.0

–24.0

–36.0

–48.0

–60.0

G
ai

n
(d

B
)

Frequency

ws
2

Figure 7.2. Chebyshev lowpass IIR filter

Digital Signal Processing

Impulse Invariant method. It is obtained by solving for the T (z) that has
the same output values as the analog filter at the sample times when both
have an impulse input. The formula for this method is derived below. It
should be noted that the digital filter obtained by this method is an
approximation for all inputs, and it is exact for an impulse input. This is
the easiest IIR filter design method to use, but as it is most accurate for
low frequencies, it is usually only used for lowpass filters.

For either the Laplace transform or the z-transform, the transform of the
output is just the input transform multiplied by the corresponding
transfer function, T (s) or T (z). This was shown in Chapter 4 for the
z-transform and is given here along with the corresponding equation for
the Laplace transform. Remember Y(s) or Y(z) is the transformed output
for X(s) or X(z), the transformed input.

Y(s) = T (s)X(s)

Y(z) = T (z)X(z)

85

0.0

–12.0

–24.0

–36.0

–48.0

–60.0

G
ai

n
 (

dB
)

Frequency

ws
2

Figure 7.3. Inverse Chebyshev bandpass filter

IIR Filter Design

However, as the Laplace transform and the z-transform of a unit impulse
are 1, the transforms of the outputs are

Y(s) = T (s)

Y(z) = T (z)

Now the analog filter output in the time domain is just the inverse Laplace
transform, and if we replace t by nT , we have the output due to an
impulse at the sample times, y(nT), which is also written as y(n) for
notational convenience. This discrete-time signal can now be z-trans-
formed to get T (z). These steps are shown in the next equations, where
L–1 refers to the inverse Laplace transform operation: that is, it gives the
signal whose Laplace transform is in the brackets.

y(t) = L−1[Y(s)] = L−1[T (s)]

y(n) = y(nT) = y(t)|t = sT

86

0.0

–12.0

–24.0

–36.0

–48.0

–60.0

G
ai

n
(d

B
)

Frequency

ws
2

Figure 7.4. Cauer bandstop IIR filter

Digital Signal Processing

T (z) = Y(z) = Z[y(n)]

T (z) = Z[y(n)] = Z[y(nT)]

T (z) = Z{L−1[T (s)]t = nT }

The final equation says that the mathematical description of the digital
IIR filter is the z-transform of the analog signal after sampling whose
Laplace transform is T (s). This equation is usually shortened by writing
it as Equation 7.1. Equation 7.1 is not mathematically correct, but it is
really just shorthand notation saying to z-transform the sampled inverse
Laplace transform of T(s).

T (z) = Z[T (s)]∗T (Equation 7.1)

Notice that a multiplying factor, or T , appears in Equation 7.1. This is
because even though the Laplace and z-transforms of the unit impulses
are 1, the impulses themselves are not the same. For analog signals the
impulse has infinite value at t = 0 but an area of 1, while a discrete time
impulse has value 1 at t = 0T = 0. To account for this difference, the
multiplying factor of T is used.

Equation 7.1 giving the formula for determining the digital IIR filter for
an analog filter still looks forbidding, but with the use of tables like Table
4.1 (page 44), the process is easy. All you need to do is find the time signal
in column 1 that corresponds to the analog signal with the Laplace
transform T (s) of the analog filter. Column 2 gives the sampled time
signal y(n) whose z-transform is in column 3. Example 7.1 illustrates this
process for a simple analog filter.

Example 7.1. Finding the impulse invariant IIR filter to
approximate a first-order analog filter

Problem: A first-order lowpass filter with dc gain of 1 and a corner
frequency wc = 10 rad/s is given here. It can easily be seen to be a lowpass
analog filter by letting s = jw. For w << wc, the gain is approximately 1,
and for w >> wc, the gain decreases linearly with w. We want to find a
digital filter that approximates this analog filter, using the impulse
invariant method for a sample time T = 0.1.

87

IIR Filter Design

T (s) =
10

s + 10

Solution: Equation 7.1 says we must first get the time domain impulse
response of T (s), then sample it as if it went through an ADC with T =
0.1, and finally take the z-transform of the sampled signal. This z-trans-
form will be the z-transfer function of the approximate digital filter. These
steps, which really go from column 1 to column 3 in Table 4.1, are shown
in the following equations, along with the scaling multiplication by T .

T (z) = Z[T (s)]∗T

T (z) = Z

10
s + 10

 ∗T

T (z) = Z[10e−10nT]∗T

= Z[10e−10n(0.1)](0.1) = Z[10(e−1)n](0.1)

=
10(0.1)z
z − e−1

=
z

z − e−1

The gain curve of this digital filter is plotted in Figure 7.5 using the
method given in Chapter 6. The repetition of the gain above half the

88

Figure 7.5 Gain plot of digital lowpass filter of Example 7.1

Digital Signal Processing

sampling frequency of 31.4 rad/s can be seen, as well as the lowpass filter
characteristics with the gain dropping above 10 rad/s. In this example the
poor approximation characteristics of the impulse invariant method can
be seen for higher frequencies, since the sampling frequency was not well
above the corner frequency.

In order to use the Impulse Invariant method for more complex analog
filter transfer functions, it may be necessary to do a Partial Fraction
Expansion (PFE) of T (s) using algebra. After a PFE is done, all that needs
to be done is to determine the inverse Laplace transform of each partial
fraction in the expansion of T (s) in column one of Table 4.1, and replace
it by the corresponding z-transform in column 3. This procedure is shown
in Example 7.2.

Example 7.2. Finding the IIR approximation to a more complex
analog filter

Problem: Find the digital IIR filter for the second-order lowpass analog filter
given by the following equation for T (s) for a sampling period T = 0.05 s.

T (s) =
15

s(s + 15)

Solution: The first thing is to do a PFE of T (s), so that it is the sum of
terms that have time responses in column 1 of Table 4.1. This is shown in
the following equations. Remember, to do a PFE without a mathematical
package that does it, all you need to do is reverse putting T (s) over a
common denominator and then use algebra to solve for the unknown
coefficients A 1 and A 2 in the sum of terms.

T (s) =
15

s(s + 15) =
A 1

s
 +

A2

s + 15

=
A 1

s
 +

A 2

s + 15

Putting the terms back over a common denominator gives the following
equation, which is easily solved for the numerator coefficients.

A1(s + 15) + A 2s
s(s + 15) =

15
s(s + 15)

89

IIR Filter Design

A 1(s + 15) + A 2s = 15

s(A 1 + A 2) + 15A 1 = 15

From the preceding equation it is easy to see that

A 1 = 1

A 2 = –1

So we have

T (s) =
1
s

 +
−1

s + 15

From Table 4.1 (page 44), we derive the following digital IIR filter
equation.

T (z) = [
z

z − 1
 −

z
z − e−15T] ∗ T

T (z) = 0.05 ∗
z(1 − e−0.75)

(z − 1)(z − e−0.75)

T (z) =
0.05z(1 − 0.472)
(z − 1)(z − 0.472)

T (z) =
0.05z − 0.0264

z2 − 1.472z + 0.472

We could use the procedure given in Chapter 6 to plot the gain curve of
the preceding equation, as was done in Example 7.1. But this time let’s
use the methods given in Chapter 5 to derive the difference equation for
the filter, which as was mentioned in Chapter 1 is easily converted to
computer code. The following equations show the derivation of the filter
difference equation.

T (z) =
Y(z)
X(z) =

0.05z − 0.0236
z2 − 1.472z + 0.472

Y(z)(z2 − 1.472z + 0.472) = X(z)(0.05z − 0.0236)

90

Digital Signal Processing

Y(z)(1 − 1.472z−1 + 0.472z−2) = X (z)(0.05z−1 − 0.0236z−2)

y(n) − 1.472y(n − 1) + 0.472y(n − 2) = 0.05x(n − 1) − 0.0236x(n − 2)

y(n) = 1.472y(n − 1) − 0.472y(n − 2) + 0.05x(n − 1) − 0.0236x(n − 2)

This last equation could easily be coded to approximate the analog filter,
since it says the current output y(n) is a weighted sum of two previous
outputs and two previous inputs.

 7.3 The Step Invariant IIR Filter

Another digital IIR filter approximation to an analog filter is found by
using the step invariant method. This is usually a better approximation
than the impulse invariant filter. The digital filter is exact at the sample
times for a piecewise constant input, that is, one composed of discrete
steps, as shown in Figure 7.6. The step invariant IIR filter is less exact as
the input signal into the ADC deviates from a piecewise constant form.
However, this is usually a better approximation to any input than a bunch
of impulses, as is done by the impulse invariant approximation.

The step invariant method solves for the T (z) that gives the same sample
values as the analog filter T (s) when both have step inputs. For the digital
filter the input is u(n), and for the analog filter the input is u(t). The
z-transform and Laplace transforms of these inputs are given and used in

91

x(t)

t, s
0 T 3T

Figure 7.6. Example of piecewise constant analog input signal

IIR Filter Design

the following equations to get the corresponding transformed output
signals.

L[u(t)] =
1
s

Z[u(n)] =
z

z − 1

Y(z) = T (z)U (z) = T (z) z
z − 1

Y(s) = T (s)U (s) =
T (s)

s

The output of the analog filter is y(t), which is the inverse Laplace
transform of Y(s) in the preceding equation. If it were sampled every T
seconds, it would be y(n), which is the inverse z-transform of Y(z) in the
preceding equations. These signals can be used to solve for the z-trans-
form of a digital filter with the same outputs at the sample times as the
analog filter, since they are equated. The following equations show the
solution for T (z) given by Equation 7.2, which is the formula for an
approximation to an analog filter using the step invariant method.

T (z) =
z − 1

z
Y(z)

T (z) =
z − 1

z
Z[y(n)]

T (z) =
z − 1

z
Z[Y(s)]

T (z) =
z − 1

z
Z[

T (s)
s

] (Equation 7.2)

Remember that Z[Y(s)] is just shorthand notation for the z-transform of
the sampled inverse transformed signal Y(s). Example 7.3 shows how
Equation 7.2 is used to get a different digital IIR filter to approximate the
analog filter in Example 7.1.

92

Digital Signal Processing

Example 7.3. Finding the Step Invariant IIR filter to approximate a
first-order lowpass analog filter

Problem: Find the transfer function T (z) for a digital filter that approxi-
mates the analog lowpass filter in the following equation, using the step
invariant method with the sample period T = 0.1 s.

T (z) =
10

s + 10

Solution: Using Equation 7.2, we have the following equations.

T (z) =
z − 1

z
Z[

10
s(s + 10)]

T (z) =
z − 1

z
Z

1
s

 −
1

s + 10

T (z) =
z − 1

z

z
z − 1

 −
z

z − e−10T

T (z) =

1 −

z − 1
z − e−10T

T (z) =
1 − e−10T

z − e−10T

T (z) =
1 − e−1

z − e−1

We have used PFE to get the terms inside the brackets to have the forms
in Table 4.1, column 1.

Column 3 of Table 4.1 gives the corresponding z-transformed sampled
signals. The result is given in the last equation, which could be used to
find the digital filter gain curve or used to get the difference equation to
actually code the digital filter.

93

IIR Filter Design

 7.4 The Bilinear Transform (BLT) Filter

One of the best digital IIR filter approximations to an analog filter is
obtained using the Bilinear Transform (BLT) method. The formula for
this method is not obtained in the same way as the formulas for the
preceding two methods were, which was to mathematically force the
outputs to be the same for a specific type of input at the sample times.
Instead, the BLT formula uses the fact that for a Laplace transform X(s)
of a signal x(t), its integral without initial conditions is given by X(s)/s.
Thus multiplying the Laplace transform of a signal by 1/s is the same as
integrating the signal in the time domain.

However, the following difference equation also approximately integrates
the signal x(t) by using its sampled values x(nT) = x(n). Remember that
the integral of a signal without initial conditions is just the area under the
signal.

y(n) = y(n − 1) +
x(n) + x(n − 1)

2
 ∗ T

The preceding equation just says that the area under a signal after a new
input sample x(n) is just the previously computed area y(n – 1) plus the
average of the new input and the previous input multiplied by the time
between samples. Now this is just the previous area plus the average of
the new area. By z-transforming the preceding difference equation, we
get the following equations, which are solved for T (z) once we get the
transforms of the input X(z) and the output Y(z).

Y(z) = z−1Y(z) + 0.5[X(z) + z−1X (z)]∗T

Y(z)(1 − z−1) = 0.5T X (z)(1 + z−1)

T (z) =
Y(z)
X (z)

 =
T
2

1 + z−1

1 − z−1

The preceding equation is a transfer function of a DSP system that
approximates the analog transfer function of a system that does integra-
tion. These two transforms are equated in the following form and then
solved for s after multiplying numerator and denominator by z.

94

Digital Signal Processing

T
2

z + 1
z − 1

 ≈
1
s

s =
2
T

z − 1
z + 1

This relationship is then used in any Laplace transfer function of an
analog filter T (s) to get the digital IIR filter T (z) that approximates the
analog filter. This is shown in Equation 7.3, which is the formula used to
compute the BLT IIR digital filter, starting with the Laplace transfer
function of an analog filter.

T (z) = T (s)|s =
2
T

(z − 1)
(z + 1)

(Equation 7.3)

Equation 7.3 says that the BLT digital IIR filter that approximates an
analog filter can be obtained by using the equation for s to replace every
s in the analog transfer function T (s). This procedure is illustrated in
Example 7.4.

Example 7.4. Using the BLT method to find the IIR filter for a
first-order analog highpass filter

Problem: Given the following first-order highpass analog filter T (s), use
the BLT method to find an IIR digital filter T (z) to approximate it for a
sample time T = 0.05 s.

Solution:

95

IIR Filter Design

Figure 7.7 shows the digital IIR filter gain in dB, while Figure 7.8 shows
the gain in dB of the original analog filter.

 Application 1

1. Problem: Design a digital lowpass IIR filter system to listen to or record
the low-frequency sounds in water made by whales and other creatures
that communicate over long distances underwater. The system should
reduce the amplitudes of acoustic signals by less than 3 dB below 100 Hz,
while reducing the amplitudes of acoustic signals above 300 Hz by more
than 18 dB. These specifications should reduce the unwanted noise (due
to wave action, water motion and turbulence, motor and hull, and
electronic noise of the recording system) to an acceptable level. The
digital filter system should include an appropriate anti-aliasing filter, and
the design of the filter should result in a computer flow diagram, which
could then be coded in C or any other high-level language.

0 20 40 60
20

10

0

gaindBn

w
n

Figure 7.7. Gain plot of digital highpass filter of Example 7.4

96

Digital Signal Processing

Solution: The preceding digital filter specifications are shown graphically
in Figure 7.9, with an acceptable analog filter gain curve drawn in.
Remember any gain curve in the clear areas is acceptable. The students
can use their analog filter programs to determine an acceptable analog
filter gain curve, or use their basic knowledge of frequency response plots,
which is the approach taken next.

From Figure 7.9, it is seen that the corner frequency of the required filter
is 100 Hz, and it must drop by 18 dB in 1.5 octaves. Since, from analog
signal processing class, the students know that the gain curve drops
approximately 6 dB per octave after the corner frequency per pole, then
it is seen that the filter must be an analog filter with a constant numerator
and a second-order denominator. A simple analog filter transfer function
that does this is given by Equation 7.4.

Figure 7.8. Gain plot in dB of highpass analog filter of Example 7.4

frequency
in Hz

gain
in dB

100 300 1000
0

−3

−18

Figure 7.9. Lowpass filter graphical specification for Application 1

97

IIR Filter Design

T (s) =
(628)2

s2 + 1.41(628)s + (628)2
(Equation 7.4)

In Equation 7.4, the value of 628 is just the corner frequency in rad/s,
and the 1.41 is just the damping ratio for no overshoot of a second-order
system, as learned in analog signal processing. That these values give a
filter with a gain curve that meets the graphical specifications can be easily
seen by letting s = jw in Equation 7.4, as shown here.

T (jw) =
(628)2

−w2 + 1.41(628)jw + (628)2

The magnitude of the preceding equation, which is the gain of the analog
filter, shows that at very low frequencies (w << 628) the gain is approxi-
mately 1. However, at very high frequencies (w >> 628), the gain is
determined by the following equation, which drops by a factor of 4 for
every increase in w by 2. This is just a drop of 12 dB per octave.

T (jw) ≈
(628)2

−w2 , for w > 628

At w = 628 rad/s, the equation gives the gain as 1/1.41, or –3 dB, as shown
here.

T (jw) =
(628)2

−(628)2 + j1.41(628) + (628)2 =
1

1.41j

From the preceding discussion it is seen that an analog filter given by
Equation 7.4 meets the graphical specifications of the lowpass filter. The
next design step is to get an IIR digital filter to approximate the analog
filter.

Using the BLT method shown in Equation 7.5, we can get an approximate
digital IIR filter to replace the analog filter given in Equation 7.4. The
sampling period T must be chosen before any digital filter can be derived,
since we have learned that changing T changes the filter gain. For this
application let’s choose a sample frequency of 2 kHz, which gives T =
0.0005 s. Any sampling frequency substantially above twice the highest
specified graphical frequency is appropriate. In this case the Nyquist limit
is at 1 kHz, which is over an octave above the stopband frequency of 300

98

Digital Signal Processing

Hz. The resulting digital IIR filter, T (z), is given in Equation 7.6. The
students should verify this for themselves on paper or using Mathcad.

T (z) = [T (s)]s =
2
T

(z − 1)
(z + 1)

(Equation 7.5)

T (z) =
0.01977(z + 1)(z + 1)
z2 − 1.565z + 0.6438

(Equation 7.6)

Now that we have a possible IIR digital filter, its gain curve should be
checked to see if our assumptions and computations are reasonable.
Using the method given in Chapter 6 and shown in Equation 7.7, the gain
is computed and plotted using Mathcad in Figures 7.10a and 7.10b.

gain = |T (z)|z = cos(wT) + jsin(wT) (Equation 7.7)

As can be seen in Figures 7.10a and 7.10b, the gain curve meets the
graphical specifications except for the repeated passband at the sam-
pling frequency. In Chapter 2 it was shown that this is unavoidable
due to sampling; thus, we need to design an anti-aliasing filter that
will reduce this repeated passband gain below the graphical specifi-
cations.

The anti-aliasing filter must reduce the gain of the system using it by at
least 18 dB at 2 kHz, which is 12,566 rad/s. As a first-order lowpass analog
filter drops 20 dB per decade above the corner frequency, the corner
frequency should be at about 1,257 rad/s. Thus the transfer function of
the analog filter is given by Equation 7.8.

Figure 7.10a. Mathcad gain plot of IIR LPF

99

IIR Filter Design

T (s) =
1257

s + 1257
(Equation 7.8)

The frequency response is given by letting s = jw, which gives the following
equation.

T (jw) =
1257

jw + 1257

It can be seen from the preceding equation that at low frequencies the
gain (the magnitude of the frequency response) is 1, while at high
frequencies it is reduced by about a factor of ten when the frequency is
ten above the corner frequency. This is the same as saying a 20 dB
reduction per decade.

The next task is to design an analog filter with the transfer function given
in Equation 7.8. The RC circuit shown in Figure 7.11 has this transfer
function, as shown next.

Vo

Vi
 = T (s) =

1
sC

R +
1

sC

 =
1

RCS + 1
 =

1
RC

s +
1

RC

If C is chosen to be 0.1 µF, then R must be 8 K for the corner frequency
of 1/RC to be about 1,257 rad/s. The frequency response of the analog
anti-aliasing filter is obtained by letting s = jw in Equation 7.8. The
complete system is shown in Figure 7.12, and its total gain is obtained by

Figure 7.10b Mathcad gain plot of IIR LPF

100

Digital Signal Processing

adding the gains of the anti-aliasing filter and the digital filter in dB. This
is shown in Figure 7.13.

Finally, to implement the filter system, the RC lowpass anti-aliasing filter
must be built. Its output must go into an ADC whose outputs are the
sampled inputs to the processor running the digital filter. The coding for
the digital filter is obtained by determining the difference equation from
the digital filter transfer function and then coding the difference
equation in a loop that saves the input and output values that are needed,
while inputting new ADC samples and outputting new difference equa-
tion outputs to the DAC. First, the difference equation is derived, using
the shifting property from z-transform theory, as follows.

T (z) =
Y(z)
X (z) =

0.01977(z + 1)(z + 1)
z2 − 1.565z + 0.6438

Y(z)(z2 − 1.565z + 0.6438) = X(z)(0.01977)(z2 + 2z + 1)

+

vo

Figure 7.11 First-order RC analog anti-aliasing filter for Application 1

Figure 7.12. Complete system for Application 1

101

IIR Filter Design

z2Y(z) = 1.565zY(z) − 0.6438Y(z) + 0.01977z2X (z)
+ 0.03954zX (z) + 0.01977X(z)

Y(z) = 1.565z−1Y(z) − 0.6438z−2Y(z) + 0.01977X (z) + 0.03954z−1X (z)
+ 0.01977z−2X (z)

 y(n) = 1.565y(n − 1) − 0.6438y(n − 2) + 0.01977x(n) + 0.03954x(n − 1)
+ 0.01977x(n − 2)

The flow diagram of the coding, which could be done in any of several
languages like Basic or C, is shown graphically in Figure 7.14, where the
programmer has assumed that the latest input x(n) is given the name X ,
the previous input X1, and the input before that X2. The same coding
scheme is used for the output y(n), y(n – 1), and y(n – 2).

 Summary

In this chapter we have finally developed formulas to determine several
digital IIR filters to approximate analog filters. These formulas are given
in Equations 7.1, 7.2, and 7.3 for the impulse invariant, step invariant,
and BLT methods respectively. Mathematically the impulse invariant can
be seen to be more direct, while the step invariant requires more
computation to get T (z). The BLT usually requires even more computa-
tion but is easy for a mathematical package to perform since it involves
symbolic substitution of variables. As the BLT usually has a gain curve that
more closely matches that of the analog filter, it is usually preferred.
However, if the input is closely approximated by a steplike function, then

Figure 7.13 Mathcad gain plot of IIR LPF and analog anti-aliasing filter

102

Digital Signal Processing

the step invariant method will obviously be more accurate. In control
systems the BLT method’s phase shift may cause more problems than the
step invariant, which is usually preferred for digital control. For digital
filtering, the phase shift is not a problem.

In section 7.1 a review of analog filter approximations was done, since
digital IIR filters are approximations to these analog filters. The digital
IIR filter designer must start out with one of these analog approximations
to the ideal analog gain specification.

 Self-Test

1. For the following first-order lowpass analog filter T (s), use the impulse
invariant method to determine a digital IIR filter to replace it for the

−

Figure 7.14. Flowchart for Application 1

103

IIR Filter Design

given sample periods T . The analog filter has a corner frequency of
100 rad/s and a dc gain of 1.

T (s) =
100

s + 100
(a) T = 0.01 s

(b) T = 0.002 s

2. For the first-order lowpass analog filter in Problem 1, use the step
invariant method to determine a digital IIR filter to replace it for the
given sample periods T .

(a) T = 0.01 s

(b) T = 0.005 s

3. For the following first-order highpass analog filter, use the BLT
method to determine a digital IIR filter to replace it for the given
sample periods T . The analog filter has a corner frequency of 50 rad/s
and a highpass gain of 1.

T (s) =
s

s + 50
(a) T = 0.02 s

(b) T = 0.01 s

4. For the following second-order Butterworth lowpass analog filter T (s),
use the impulse invariant method to determine the digital IIR filter to
replace it for the given sample periods T . The analog filter has a
corner frequency of 100 rad/s and a dc gain of 1.

T (s) =
10000

s2 + 141.42s + 10000
(a) T = 0.01 s

(b) T = 0.005 s

5. For the following second-order analog Chebyshev lowpass filter T(s),
use the impulse invariant method to determine the digital IIR filter to
replace it for the given sample periods T . The analog filter has a
corner frequency of 100 rad/s with a dc gain of 1 and a 3 dB ripple.

104

Digital Signal Processing

T (s) =
7079

s2 + 64.5s + 7079
(a) T = 0.01 s

(b) T = 0.005 s

 6. For the second-order Butterworth lowpass analog filter T (s) in
Problem 4, determine the difference equation of the digital IIR filter
that could then be coded on a computer or DSP chip for the sample
period T = 0.005 s.

 7. For the second-order Chebyshev lowpass analog filter T (s) in
Problem 5, determine the difference equation of the digital IIR filter
that could then be coded on a computer or DSP chip for the sample
period T = 0.01s.

 8. For the highpass analog filter in Problem 3, determine the difference
equations of the digital filter that could then be coded on a computer
or DSP chip to replace the analog filter at the sample periods of T =
0.02 and T = 0.01 s.

 9. For the first-order lowpass analog filter in Problem 1, use the BLT
method to determine a digital IIR filter to replace it for the sample
periods in Problem 1.

10. Use the method given in Chapter 6 and Mathcad to plot the gain in
dB of the lowpass digital filters in Problem 1 for the two sampling
periods given in Problem 1. Let the frequency axis go from 10 to
1,000 rad/s, using a log scale with a value computed every 10 rad/s.

11. Use the method given in Chapter 6 and Mathcad to plot the gain in
dB of the lowpass digital filters given in Problem 2 for the two
sampling periods given in Problem 2. Let the frequency be plotted
on a log scale and go from 20 to 200 rad/s with values computed
every 20 rad/s.

12. Use the method given in Chapter 6 and Mathcad to plot the gain in
dB of the highpass digital filters given in Problem 3 for the two
sampling periods given in Problem 3. Let the frequency axis be

105

IIR Filter Design

plotted on a log scale and go from 10 to 200 rad/s with values
computed every 10 rad/s.

13. For the following first-order highpass analog filter, use Mathcad to
determine an IIR digital filter to replace it for the sample period of
0.025 s. Plot the gain in dB of the IIR filter from 1 to 100 rad/s on a
log scale.

T (s) =
2s

(s + 30)

14. For the second-order Butterworth lowpass analog filter T (s) given in
Problem 4, use Mathcad to determine the digital IIR filter to replace
it for the sample period T = 0.008 s.

15. For the second-order analog Chebyshev lowpass filter T (s) given in
Problem 5, use Mathcad to determine the digital IIR filter to replace
it for the sample period T = 0.003 s. Plot the gain in dB from 10 to
1,000 rad/s on a log scale.

 Problems

1. For the following first-order lowpass analog filter T (s), use the impulse
invariant method to determine a digital IIR filter to replace it for the
given sample periods T . The analog filter has a corner frequency of
250 rad/s and a dc gain of 2.

T (s) =
500

s + 250
(a) T = 0.004 s

(b) T = 0.002 s

2. For the first-order lowpass analog filter in Problem 1, use the step
invariant method to determine a digital IIR filter to replace it for the
given sample periods T .

(a) T = 0.004 s

(b) T = 0.002 s

3. For the following first-order highpass analog filter, use the BLT

106

Digital Signal Processing

method to determine a digital IIR filter to replace it for the given
sample periods T . The analog filter has a corner frequency of 100
rad/s and a highpass gain of 3.

T (s) =
3s

s + 100
(a) T = 0.005 s

(b) T = 0.0025 s

4. For the following second-order Butterworth lowpass analog filter T (s),
use the impulse invariant method to determine the digital IIR filter to
replace it for the given sample periods T . The analog filter has a
corner frequency of 250 rad/s and a dc gain of 1.

T (s) =
62500

s2 + 353.6s + 6250
(a) T = 0.005 s

(b) T = 0.001 s

5. For the following second-order analog Chebyshev lowpass filter T (s),
use the impulse variant method to determine the digital IIR filter to
replace it for the given sample periods T . The analog filter has a
corner frequency of 250 rad/s and a dc gain of 1 with 3 dB ripple.

T (s) =
44247

s2 + 161.2s + 44247
(a) T = 0.005 s

(b) T = 0.001 s

 6. For the second-order Butterworth lowpass analog filter T (s) in
Problem 4, determine the difference equation of the digital IIR filter
that could then be coded on a computer or DSP chip for the sample
period T = 0.001 s.

 7. For the second-order Chebyshev lowpass filter T (s) in Problem 5,
determine the difference equation of the digital IIR filter that could
then be coded on a computer or DSP chip for the sample period
T = 0.005 s.

 8. For the highpass analog filter in Problem 3, determine the difference

107

IIR Filter Design

equations of the digital filter that could then be coded on a computer
or DSP chip to replace the analog filter at the sample periods of
T = 0.005 s and T = 0.0025 s.

 9. For the first-order lowpass analog filter in Problem 1, use the BLT
method to determine a digital IIR filter to replace it for the sample
periods in Problem 1.

10. Use the method given in Chapter 6 and Mathcad to plot the gain in
dB of the lowpass digital filters in Problem 1 for the two sampling
periods given. Let the frequency axis go from 10 to 1,000 rad/s using
a log scale with values every 25 rad/s.

11. Use the method given in Chapter 6 and Mathcad to log the gain in
dB of the lowpass digital filters in Problem 2 for the two sampling
periods given. Let the frequency axis be plotted in a log scale and go
from 1 to 1,000 rad/s with values every 10 rad/s.

12. Use the method given in Chapter 6 and Mathcad to plot the gain in
dB of the highpass digital filters given in Problem 3 for the two
sampling periods given. Let the frequency axis be plotted in a log
scale and go from 25 to 200 rad/s with values every 5 rad/s.

 Answers to Self-Test

1a. T (z) =
z

z − 0.368

1b. T (z) =
0.2z

z − 0.817

2a. T (z) =
0.632

z − 0.368

2b. T (z) =
0.393

z − 0.607

3a. T (z) =
0.667(z − 1)

z − 0.333

108

Digital Signal Processing

3b. T (z) =
0.8(z − 1)

z − 0.6

4a. T (z) =
0.460z

z2 − 0.75z + 0.243

4b. T (z) =
0.172z

z2 − 1.37z + 0.49

5a. T (z) =
0.463z

z2 − 1.03z + 0.525

5b. T (z) =
0.147z

z2 − 1.58z + 0.724

a6. y(n) = 1.32y(n − 1) − 0.49y(n − 2) + 0.172x(n − 1)

a7. y(n) = 1.03y(n − 1) − 0.525y(n − 2) + 0.147x(n − 1)

a8. y(n) = 0.333y(n − 1) + 0.677[x(n) − x(n − 1)],
 y(n) = 0.6y(n) + 0.8[x(n) − x(n − 1)]

9a. T (z) =
0.333(z + 1)

z − 0.333

9b. T (z) =
0.0909(z + 1)

(z − 0.818)

13. gain of –23.5 dB at 1 rad/s, corner frequency at 30 rad/s

14. T (z) =
0.0927(z + 1)(z + 1)

z2 − 0.9735z + 0.3444

15. T (z) =
0.0143(z + 1)(z + 1)
z2 − 1.769z + 0.8261

109

IIR Filter Design

Digital Filter and DSP Stabilit y

 Introduction

In Chapter 7 we learned to derive the mathematical description T (z) of
an IIR digital filter from the mathematical description T (s) of an analog
filter. Since IIR digital filters are approximations to corresponding analog
filters, they have stability concerns just like any analog system given by
T (s) using Laplace transforms. For analog filters this is not much of a
problem, since their design methods do not give unstable filters. However,
if the filter is near instability, slight changes in the system could cause the
output to grow without bound for any input. As we will see in Chapter 9,
digital IIR filters are usually much more sensitive to numerical tolerances
than their analog counterparts.

The consideration of stability will also give the student a deeper insight
into how the mathematical description T (z) of a digital filter or DSP
system indicates many of the properties of the filter or system without
having to code and test it. We show this by relating the stability of digital
and analog systems to the pole locations of their transfer functions, and
then relating the pole and zero locations of T (z) to those of T (s). The
poles and zeros of T (s) allow one to estimate the gain of an analog system
using the familiar Bode plots.

 8.1 Introduction to Stability

A system, including analog or digital filters, is unstable if its output grows
without bound no matter what the input is, or even without an input but

Digital Filter and DSP Stability

 c h a p t e r 8

111

because of initial conditions or noise. For analog systems, if any root of
the denominator of T (s) is in the right half of the s-plane, it is unstable
(as well as if there are repeated roots on the imaginary or jw axis). This
is shown in Figure 8.1. The methods used to design analog filters do not
generate unstable filters, but filters that are near being unstable have
initial outputs that may be undesirable. The student will see in Chapter
9 that digital filters are usually much more sensitive to numerical
tolerances than analog filters, as well as sensitive to changes in the sample
period T for which it was designed. It would be nice to find a relationship
between the denominator roots of T (z) and digital filter stability, and
even a relationship between the z-plane positions and s-plane positions.

An analog system is unstable if its transfer function T (s) has any root of
its denominator, called poles, in the RHP or right half of the s-plane. Most
students are familiar with this from analog signal processing and control
systems courses. The transfer function T (s) is a ratio of polynomials, as
is shown in the following equation of a second-order system.

T (s) =
3s + 25

s2 + 4s + 35

Even if the analog filter or system is of higher order, a fundamental
property of algebra says that any order polynomial can be factored into
products of first- and second-order polynomials with real coefficients. The
roots of the denominator control some of the properties of the analog
system; their location in the s-plane determines the stability or instability
of the analog system. Since digital IIR filters or DSP systems approximate

112

Figure 8.1 The hatched area is the unstable region for analog poles in s plane

Re s
0

Im s

Digital Signal Processing

the responses of analog systems, they could become unstable or nearly
unstable. What is needed is a way to use the considerable knowledge about
the pole locations in the s-plane to determine knowledge about the pole
locations of T (z) in the z-plane. This is done in the next section.

 8.2 The Z-plane Unit Circle

In Chapter 4 we developed the z-transform of discrete-time signals. In
Table 4.1 we give the z-transform X(z) of a sampled exponential signal
x(n). This is given again in Equation 8.1, where c = e–aT is just a constant.

x(n) = Ae−anT = Acn

X(z) = A
z

z − e−aT = A
z

z − c
(Equation 8.1)

In the development of the z-transform of the preceding discrete-time
signal, there was no restriction put upon c . Usually c is real and positive,
so that x(n) is an exponentially decreasing sampled signal. However, it
could be thought of as a zero, negative, imaginary, or even complex pole.
By doing this, we will see that the poles of the z-transfer function T (z) tell
a lot about the stability and other behavior of the digital filter or DSP
system described by T (z).

The ability of poles of T (z) to give us a qualitative idea about the output
of a DSP system or digital filter is explained next. We have seen that T (z)
is the mathematical description of a DSP system, and if it is multiplied by
the z-transform of an input we get the z-transform of the sampled output
from the computer or DSP chip before it goes into the DAC to be
converted back to an analog signal. The following equation shows this
again.

Y(z) = T (z)R(z)

Now, a fundamental theorem of algebra—and the student’s experience—
says that the denominator polynomial of Y(z) can be factored into
products of first-order polynomials if you allow complex roots. Then using
algebra to do a PFE, we could get Y(z) to be a sum of terms with a constant
in the numerator (times z) over a factor of the denominator polynomial

113

Digital Filter and DSP Stability

of Y(z). This is shown in the following equation without solving for the
numerator coefficients, which may be complex.

Y(z) =
b2z

2 + b1z + b0

(z − c1)(z − c2)(z − c3)
R (z) =

A 1z
z − c1

 +
A 2z

z − c2
 +

A 3z
z − c3

 + ⋅ ⋅ ⋅

The remainder of the terms are constants over the factors of the
denominator of R(z), the input z-transform. The inverse z-transform of
the preceding equation could be taken by using Table 4.1 again to get
the following equation.

y(n) = A 1(c1)
n + A 2(c2)

n + A 3(c3)
n + ⋅ ⋅ ⋅

The preceding equation says that any output of a computer or DSP chip will
be a sum of terms consisting of a constant multiplied by the pole of T (z)
raised to the nth power plus a term or terms due to poles of the input to the
computer or DSP chip. The input is supplied by the user of the DSP system,
but T (z) is given by the DSP system designer, who should know what the
terms of the output due to T (z) are, no matter what the input is.

First let’s look at a pole c = 1 in Equation 8.1. For this case we see that
x(n) has a term of constant amplitude A . This says that if any pole of T (z)
is +1, then the corresponding output sampled time y(n) signal has a
constant term in it. Notice that if the pole were slightly larger than +1,
then the PFE of the output time signal would have a term in it that would
grow without bound, which would give an unstable system no matter what
the other terms were. The plot of this term for c = 1.1 and A = 1 is shown
in Figure 8.2a.

114

0 5 10
1

2

3

x(n)

n

Figure 8.2a. Plot x(n) of Equation 8.1 with pole c outside unit circle at 1.1

Digital Signal Processing

What about other pole positions? Again, using Equation 8.1 for poles of
–1, j , –j , we have the following sampled time terms respectively, depend-
ing on the value of n.

A (−1)n = +A , or −A

A(j)n = jA or −A , or −jA , or A

A (−j)n = jA or −A , or −jA , or A

In the preceding equations the magnitude of the term with the pole of –1,
j , or –j is always 1. It can also be seen that if the magnitude of the poles were
increased slightly, the corresponding PFE term would be an increasing
magnitude in the sampled time domain. The opposite is true if the magni-
tudes of the poles were slightly less than 1. Thus it looks like if the magni-
tude of any pole of T (z) is greater than 1, then the PFE term due to that
term will have an increasing amplitude in the sampled time domain. This is
another way of saying that the digital filter or DSP system is unstable if any
pole lies outside a unit circle, as shown in Figure 8.2b.

Now remember this is just what happens with poles of the analog transfer
functions to the right of the jw or imaginary axis in the s-plane. Also,
analog poles on the jw axis for w = 0 give a constant term in the PFE just
like the z-transfer function pole at z = 1. Thus, starting at z = 1 and
traveling around the unit circle in the z-plane is similar to starting at w =
0 on the jw axis and moving up or down, except now you travel in a circle,
which means you start to repeat. This corresponds to what we discovered

115

Re z

Im z

1
−1

1

−1

poles outside circle
unstable

Figure 8.2b. Unit circle in the z-plane

Digital Filter and DSP Stability

in Chapter 2, that the frequency responses of digital filters or DSP systems
repeat!

Thus, the line of the unit circle leaving from 1 in the z-plane is just
like going up the jw axis starting at the origin in the s-plane with
the stable region to the left and the unstable region for poles to the
right. For the z-plane, right of the line is the region outside the unit
circle, and left of the line is inside the unit circle. You can think of
the jw axis as bending to the left till it closes on itself and the origin
moved to 1 in order to form the stable region of the z-plane from
the stable region of the s-plane. This again is illustrated in Figure
8.2b. In reverse order, you can think of the unit circle being cut at
the –1 point and unwrapped into two vertical lines moved left to 0
to form the stable region of the s-plane, as shown in Figure 8.3.
These visualizations give insight into the characteristics of the digital
filter or DSP system given by T (z) by thinking of the unwrapped
unit circle with the inside area as going into the entire left half plane
of the s-plane.

If you have a pole of T (z) at 1, it is like an s-plane pole at 0. Any
pole of T (z) on the real axis inside the unit circle is like a pole of
T (s) on the negative real axis. Any pole of T (z) inside the unit circle
but off the real axis is like complex poles of T (s) in the left half
plane. Figure 8.4 illustrates these relationships. These analogies give
insight into the characteristics of the digital filter T (z). Examples 8.1
and 8.2 show how to use this relationship to determine the stability
of a digital system.

116

1
Re z

Im z

−1

−1

0

region of
unstable
poles

Figure 8.3. The unit circle becoming the s plane jw axis

Digital Signal Processing

Example 8.1. Using z-plane pole locations to determine if an IIR
filter is unstable

Problem: Given the following digital IIR filter, determine if it is unstable,
that is, its output will grow without bound for any input.

T (z) =
z2 + z + 1

(z − 0.9)(z + 1.1)

Solution: Without knowing how this filter was developed and what it was
for, the student can still tell that this is an unstable filter as a result of a

117

Re z

Im z

1−1

1

−1

x

x

xx

Figure 8.4a. Real poles and complex poles in z plane

Re s

Im s

x

x

x

x

Figure 8.4b. S plane poles corresponding to the z-plane poles of Figure
8.4a

Digital Filter and DSP Stability

design error or numerical tolerances in determining the filter coeffi-
cients. The poles and zeros are given here.

poles: 0.9, –1.1

zeros: –0.5 ± 0.87j

When determining stability, the student need only to look at the
magnitude of the poles; as one is greater than 1, the digital filter is
unstable. Note the instability is not caused by the positive pole at 0.9,
which would cause instability in an analog system. Figure 8.5 shows the
gain plot of the digital filter for T = 0.1 s, using the methods given in
Chapter 6. This plot gives no hint of instability, but if the output of the
digital filter were computed for any sinusoidal input, part of the output
would be growing without bound. This part is shown in Figure 8.6.

Example 8.2. Using pole location to determine the stability of an
unfactored T(z)

Problem: Let the digital filter transfer function T (z) be given by the
following equation.

118

0040

20

0
10–1 100

Frequency (rad/sec)

101

G
ai

n
(d

B
)

Figure 8.5. Gain plot of T(z) in Example 8.1

Digital Signal Processing

T (z) =
0.2z2 + 0.5z − 1
z2 − 1.6z + 1.28

Solution: By using a calculator or completing the square, we can find the
pole values.

z2 − 1.6z + 1.28 = z2 − 1.6z + (1.6
2

)2 − (1.6
2

)2 + 1.28

= (z − 0.8)2 + 0.64

By setting the preceding equation to zero, we get the poles or roots of the
denominator as:

poles: 0.8 + j0.8, 0.8 – j0.8

The magnitude of either pole is just the square root of the square of the
real part added to the square of the imaginary part; either pole has a
magnitude as calculated by the following equation.

magnitude = √(0.8)2 + (0.8)2

magnitude = √1.28 = 1.13

Because the magnitude of either pole is greater than one, it is apparent
that the digital filter is unstable and an error in design or tolerances was

119

Figure 8.6. Time response for flter in Example 8.1

Digital Filter and DSP Stability

made in the coefficients. This example also illustrates a mathematical
shortcut. If the quadratic factor of the denominator of T (z) has complex
roots with the coefficient of the z2 term being one, then the magnitude
of either complex root is the square root of the constant term of the
quadratic factor.

 8.3 Other Properties Using the Z-plane

Another way to arrive at the same result for stability, using pole location,
but to get even more quantitative results is to use the relationship given
by Equation 6.3. This equation is repeated here.

z = esT (Equation 6.3)

If we let s = jw, then this is just the jw axis in the s-plane, but this gives a
value of z with magnitude of 1, as shown in the following equation after
comparing the results with the Euler equation.

z = e
jwT

This is just a complex number of unit magnitude and angle of wT . As w
goes up the jw axis in the s-plane, we can see that in the z-plane the value
of z moves counterclockwise around the unit circle, since the angle wT is
increasing. If s were to the left of the jw axis by a distance a, then we
would have s = –a + jw, which gives the following equation for z.

z = e–aTe
jwT

This is just a smaller circle inside the unit circle as w varies up and down
the vertical line –a to the left of the jw axis in the s-plane. This is shown
in Figure 8.7 for c = e–aT .

This relationship is very significant. It says that a pole of T (z) in the
z-plane at an angle of wT above the real z axis is like a position at w above
the real axis in the s-plane. The magnitude of the pole of T (z), e–aT = c ,
in the z-plane away from the origin, is like a pole at a distance a into the
left half s-plane. This is also true for a zero. Putting these two statements
together, we have the following equations, which allow the poles and zeros
of T (z) to be thought of as poles and zeros of an analog system T (s). This
relationship is also shown in Figure 8.8.

z = e−aT e
jwT = |z|∠z → s = −a + jw

120

Digital Signal Processing

Or in a more useful form, we have Equation 8.2, where z is a pole or zero
location.

z = |z| ∠z → s = (ln|z| + j∠z)/T (Equation 8.2)

Remember, the magnitude of a pole or zero of z is just its distance from
the origin, and its angle is the angle up from the real z axis.

The preceding equation agrees with the qualitative results obtained
earlier based on stability. If the magnitude of the pole at a value of z is
less than 1, then it is in the left half of the s-plane, since the natural log

121

−

−

−

Figure 8.7. Unit circle with circle of radius c = e– at, where – a is the real
part of s plane pole

Re z

Im z

1−1

1

−1

x

x

c

Ω

Figure 8.8a. Poles in z plane at |z| = c, and angle of z = Ω at wT

Digital Filter and DSP Stability

of a number less than 1 is negative; and if the magnitude is greater than
1, it is in the right half of the s-plane. But this equation can be used for
more quantitative evaluation of the effects of the poles and zeros of T (z)
by computing the corresponding s-plane locations. Remember, by know-
ing the poles and zeros (roots of the denominator or numerator) of T (s),
the Bode plot or gain plot could be approximated for the analog filter.
Thus by using the relationship given in Equation 8.2, we can approximate
the characteristics of the DSP system given by T (z), and even determine
the effects of changes to the system. Example 8.3 illustrates the use of
Equation 8.2 to estimate the type of digital filter from T (z), and even to
estimate its critical frequencies if it is stable.

Example 8.3. Using the unit circle to determine the characteristics of
a digital filter

Problem: Let T (z) be as given here, determine if it is stable and, if so, the
filter type and corner frequency.

T (z) =
z2 + z + 0.5

z2 − 2.00z + 0.99

Solution: From the earlier discussions, we know that stability is determined
only by the poles of T (z). Factoring the denominator only, in order to
see the roots or poles of T (z), we get the following equation.

122

Re s

Im s

x

x

w

a

Figure 8.8b. S plane poles corresponding to the z plane poles in Figure 8.8a

Digital Signal Processing

T (z) =
z2 + z + 0.5

(z − 0.900)(z − 1.100)

From the preceding equation we can see that there is a pole at 1.1, which
is greater than 1, so the DSP system given by T (z) is unstable; that is, its
output will grow without bound due to an input or initial conditions or
noise.

In the next example we will use the pole and zero locations of T (z) with
respect to the unit circle to determine the relative positions of poles and
zeros in the s-plane that could be used to estimate the gain plot.

Example 8.4. Using the relationship of the z-plane to the s-plane
to determine stability, type of filter, and filter corner frequency

Problem: Let a digital IIR filter transfer function T (z) be given by the
following equation with the sampling period T = 0.1 s. Use the relation-
ships given in Equation 8.2 to determine the filter stability, filter type, and
corner frequency.

T (z) =
0.333(z + 1)

z − 0.333

Solution: The pole and zero of the digital filter in the z-plane are given
here.

pole: z = 0.333

zero: z = –1

As the magnitude of the only pole is 0.333, the digital filter is stable and
the gain plot really gives the gain of the filter. Using Equation 8.2 on the
pole and zero we get the equivalent s-plane poles.

pole: s = 10ln(0.333) + j0

= –11 + j0

zero: s = 10ln(1) + j10(3.14)

= j31.4

123

Digital Filter and DSP Stability

Thus the corner frequency for the pole is 11 rad/s. The “corner
frequency” at 31.4 rad/s is not an actual corner frequency; it is where the
filter goes to zero at the aliasing frequency. Thus the digital filter is a
lowpass filter with a corner frequency at 11 rad/s. Figure 8.9 illustrates
the actual gain plot of the digital filter.

 Summary

In this chapter the stability of digital filters and DSP systems was shown
to be related to the pole locations of T (z). Any pole outside the unit circle
in the z-plane will cause the output of the DSP system to grow without
bounds for any input. This corresponds to the unstable region of analog
systems being the righthand plane of the s-plane. This led to a useful
correlation between the z-plane and the s-plane pole locations. A pole at
1 in the z-plane is like a pole at 0 in the s-plane, and poles between 1 and
0 in the z-plane are like poles on the negative real axis in the s-plane.

By using the relationship given by Equation 6.3 between z and s, more
quantitative results than the preceding ones were developed. In fact,
Equation 8.2 showed how to convert a z-plane pole or zero position to an

124

000

–20

–40

–60

–80
100 101

Frequency (rad/sec)
102

G
ai

n
(d

B
)

Figure 8.9. Gain plot of T(z) for Example 8.4

Digital Signal Processing

approximately equivalent s-plane position. With this relationship the
equivalent corner frequencies can be obtained as if the DSP system or
filter were an analog system or filter. Then, using Bode plots, the gains of
the digital filter or DSP system can be drawn. Examples were given
showing this powerful method of visualizing the gain of digital filters by
looking at the poles and zeros of T (z).

 Self-Test

1. Determine if the following digital filter is stable or unstable, and state
your reason in terms of the pole magnitude.

T (z) =
20z

z + 1.1

2. Determine if the following digital filter is stable or unstable, and if
unstable state which pole or poles make it unstable.

T (z) =
20(z + 1.5)

(z + 0.8)(z + 0.5 − 0.9j)(z + 0.5 + 0.9j)

3. Determine if the following system is stable; if it is, determine if it is a
highpass, lowpass, bandpass, or bandstop filter.

T (z) =
0.8(z − 1)

z − 0.6

4. Determine if the following system is stable; if it is, determine if it is a
highpass, lowpass, bandpass, or bandstop filter.

T (z) =
0.2(z + 1)

z − 0.6

5. Determine the analog corner frequency of the pole in Problem 3 for
T = 0.1 s.

6. Determine if the following digital filter is stable or unstable; if it is
unstable, state the magnitude of the pole that makes it unstable.

.

T (z) =
10z + 2

(z − 0.2)(z − 0.5)(z2 + 1.2z + 2)
125

Digital Filter and DSP Stability

7. Determine the zero and pole values for an analog filter corresponding
to the digital filter in Problem 3 for T = 0.1 s.

8. Determine the zero and pole values for an analog filter corresponding
to the following digital filter below for T = 0.1 s.

T (z) =
5(z − 1)

z − 0.368

9. Determine the zero and pole values of an analog filter corresponding
to the following digital filter below, and state if it is a highpass or
lowpass filter when the sampling period T = 0.03 s.

T (z) =
0.2(z − 0.970)

z − 0.861

 Problems

1. Determine if the following digital filter is stable or unstable, and state
your reason in terms of the pole magnitude.

T (z) =
0.981z

z − 0.782

2. Determine if the following digital filter is stable or unstable; if
unstable, state which pole or poles make it unstable.

T (z) =
10(z − 0.90)z2

(z − 1.1)(z2 − 1.20z + 0.95)

3. Determine if the following system is stable, and if it is, determine if it
is a highpass, lowpass, bandpass, or bandstop filter.

T (z) =
1.2(z − 0.2)

z − 0.6

4. Determine if the following system is stable, and if it is, determine if it
is a highpass, lowpass, bandpass, or bandstop filter.

126

Digital Signal Processing

T (z) =
0.5(z − 1)

z − 0.8

5. Determine the analog corner frequency of the pole in Problem 3
for T = 0.05s.

6. Determine if the following digital filter is stable or unstable; if it is
unstable, state the magnitude of the pole that makes it unstable.

T (z) =
25z2

(z − 1.1)(z − 0.9)(z2 + 1.4z + 0.5)

7. Determine the zero and pole values for an analog filter corresponding
to the digital filter in Problem 3 for T = 0.02 s.

8. Determine the zero and pole values for an analog filter corresponding
to the following digital filter for T = 0.002 s.

T (z) =
4(z − 1)
z − 0.5

9. Determine the zero and pole values of an analog filter corresponding
to the following digital filter, and state if it is a highpass or lowpass
filter when the sampling period T = 0.003 s.

T (z) =
0.89(z − 0.8)

z − 0.5

 Answers to Self-Test

1. Unstable. The magnitude of the pole is greater than 1.

2. Unstable. The poles at –0.5 ± j0.9 make it unstable.

3. Stable. It is a highpass filter.

4. Stable. It is a lowpass filter.

5. 5 rad/s

127

Digital Filter and DSP Stability

6. 1.414

7. 0, –5

8. 0, –10

9. –1, –5, highpass

128

Digital Signal Processing

Filt er Coef ficient Precis ion

 Introduction

In Chapter 8 we learned to find the corner frequencies of an analog filter
that would have approximately the same gain characteristics as a digital
filter until it began to repeat. This allows the designer to see if the digital
filter or DSP system is stable, and also to determine the type of filter and
even the shape of the gain curve using Bode plots. In this chapter we look
at the effect of small changes to the filter or system coefficients, the a and
b coefficients of the difference equation. We see a surprising result, that
a very small percentage change in these coefficients may cause a larger
percentage change in the corner frequency of the corresponding analog
filter. The exact change will be found to be a function of the sampling
period T .

 9.1 Introduction into Computer Numeric Precision

In analog filtering, part of the accuracy of the design is determined by
the precision of the resistors and capacitors used in building the filter. In
a similar way the accuracy of IIR digital filters and systems depends on
the precision of the numbers used to represent the a and b coefficients
of the filter difference equation to be coded. In digital filtering there is
one more parameter, the sampling period T . We will find that as the
sampling rate increases, or T decreases, more precision is required.

Filter Coefficient Precision

 c h a p t e r 9

129

Precision is only a part of the accuracy of the coefficients. Precision
is how well the value of the coefficient is represented in the coding
regardless if the coefficient value is correct or not. For any binary
numbering system used in a computer (usually two’s complement is
used), the accuracy of representation of the value of the coefficient,
or precision, doubles for every extra bit used to code the number.
(The student should be familiar with this from digital classes.) Thus
the number of bits used to represent coefficients in the coding is
analogous to the percentage tolerances used for component values
for analog systems. But we will find that to design an IIR digital filter
to the same accuracy as an analog filter, we may need 0.1 percent
tolerance on the digital coefficients, but only 5 percent tolerances on
the analog components. Example 9.1 shows how to compute the
precision of a binary representation of an analog value.

Example 9.1. Determining the precision of a digital representation
of a number

Problem: Let it be required to represent the b coefficient of 0.9 with a
precision of 5 percent as a binary number.

Solution: Let’s first try to use only two bits to the right of the binary point,
and find the error. Using two bits, the binary representation is (0.)11,
which is 0.75 base 10. Thus there is an error of almost 17 percent. Next,
let’s use three bits. The best we can do with three bits is (0.)111, which is
0.875 base 10. This gives an error of about 3 percent. Thus we see that
three bits are required to represent a coefficient of 0.9 to less than 5
percent accuracy. If more bits were used, we could represent the
coefficient even more precisely.

In Example 9.1, if the desired value were 0.75, then two bits would have
been sufficient, but since many different values are required, enough bits
are used to represent all the coefficient values to the required precision.
The precision or number of bits gives the accuracy of the representation
of the numeric value of the coefficient, but says nothing about how
accurate the original numeric value was. Thus we say the “precision of the
coefficient” when referring to the number of bits, and not its total
accuracy.

The more precise a coefficient needs to be, the more bits to the right of
the binary point are required. Each added bit to the right becomes the

130

Digital Signal Processing

Least Significant Bit, or LSB, and adds half the value of the previous bit.
The maximum error by using n bits to the right is half the value of the
LSB, since this is the maximum difference between the coefficient with
and without the nth bit as the LSB. Using this we can determine the
number of bits to the right of the binary point that are needed. This is
shown in Example 9.2.

Example 9.2. Determining the number of bits to ensure a
specified percentage precision

Problem: Find the number of bits required to represent the number 5.3 to
1 percent accuracy.

Solution: To be within 1 percent of 5.3, the binary number must be within
0.053 of 5.3. This requires n to be 4, since 1/2n is 0.0625, and half of that
is approximately 0.03.

 9.2 Development of Equations for Precision Effects

Let us first look at deriving IIR digital filters to approximate single-pole
analog filters, and then derive the difference equations for the IIR filters
that would be coded. This will show that a percentage change in the
corner frequency of an analog filter pole may require the percentage
change of the b coefficient of the corresponding difference equations to
be even less. Remember from analog filtering that given the dc gain and
the corner frequencies, good straight-line approximations to the gain in
dB of the frequency response may be obtained. These are called Bode
magnitude plots. We will do this in Example 9.3 for a first-order lowpass
analog filter. Example 9.3 develops the IIR filters for analog filters with
two different corner frequencies, and then compares the change in the b
coefficients of the corresponding difference equations of each IIR filter.
This will illustrate that small changes in the b coefficients may correspond
to larger percentage change in the pole corner frequencies.

Example 9.3. Computing the BLT IIR filters for first-order lowpass
analog filters

Problem: Given the following two similar analog filters, determine the
corresponding IIR filters using the BLT method from Chapter 7. The
student can use the method to compute the results obtained here. The
sampling period is given as T = 0.01 s. Then obtain the corresponding

131

Filter Coefficient Precision

IIR filter difference equations and compare the change in the b coeffi-
cient to the change in the analog filter corner frequencies.

T 1(s) =
10

s + 10

T 2(s) =
20

s + 20

Solution: Using the BLT method, we get the following IIR digital filters
that approximate the preceding analog filters.

T 1(z) =
0.04762(z + 1)

z − 0.90476

T 2(z) =
0.0909(z + 1)
z − 0.81818

The corresponding difference equations are obtained by using the
definition of T (z), cross multiplying, and then using the shifting property,
as the following equations show.

T 1(z) =
Y1(z)
X 1(z)

 =
0.04762(z + 1)

z − 0.90476

T 2(z) =
Y2(z)
X 2(z)

 =
0.0909(z + 1)
z − 0.81818

Y1(z)(z − 0.90476) = 0.04762(z + 1)X 1(z)

Y2(z − 0.81818) = 0.0909(z + 1)X 2(z)

zY1(z) − 0.90476Y1(z) = 0.047619zX 1(z) + 0.047619X 1(z)

zY2(z) − 0.81818Y2(z) = 0.0909zX 2(z) + 0.0909X2(z)

Y1(z) − 0.90476z−1Y1(z) = 0.047619X 1(z) + 0.047619z−1X 1(z)

Y2(z) − 0.81818z−1Y2(z) = 0.0909X 2(z) + 0.0909z−1X2(z)

132

Digital Signal Processing

y1(n) = 0.90476y1(n − 1) + 0.047619x1(n) + 0.047619x1(n − 1)

y2(n) = 0.81818z−1y2(n) + 0.0909x2(n) + 0.0909x2(n − 1)

Notice in the preceding difference equations corresponding to two
similar analog filters, with one having a corner frequency 100 percent
greater than the other, that the percentage change in the b coefficients
of the difference equations is only about 0.1 or 10 percent. However, the
change in the analog filter corner frequencies was 100 percent.

Example 9.3 gives an interesting result that suggests further study of b
coefficient accuracy is warranted. We found that a 10 percent change in
one of the coefficients (the b coefficient) of the difference equation for
a digital IIR filter corresponded to a 100 percent change in the analog
filter corner frequency. We need to be able to predict how much precision
is needed in the b coefficients for a specified corner frequency accuracy
of the original analog filter being replaced by a digital IIR filter.

Let’s look at the relationship between the poles of the Laplace transform
of the following exponentially decaying signal f (t), and poles of the
z-transform of the sampled signal. These signals are given in the following
equations.

f (t) = Ae−at

F (s) =
A

s + a

F (z) =
Az

z − c

In the last equation, c = e–aT , where T is again the sampling period. Thus
a Laplace transform pole at –a corresponds to a z-transform pole at c =
e–aT . We will use this relationship of poles of signals to find the
relationship between poles of the Laplace transfer function T (s) of the
analog filter and the z-transfer function T (z) of an equivalent IIR digital
filter.

Let’s first look at what the Laplace transform pole at –a means. If s is
replaced by jw in the preceding Laplace transform of the exponentially
decaying signal starting at A , we have the following equation.

133

Filter Coefficient Precision

T (jw) =
A

jw + a

This is just the frequency response equation of the analog system T (s).
We can see that for the frequency w below a rad/s, the dc gain is A/a.
Above the frequency of a rad/s the gain plot drops by a factor of ten for
every increase in frequency of ten, or in dB it drops 20 dB/decade. This
is the straight line Bode plot approximation of the gain in dB with respect
to frequency. This plot is shown in Figure 9.1. The straight-line approxi-
mation has its greatest error at the corner frequency a, where the gain in
dB is down 3 dB from A/a in dB. If the pole is one of a pair of complex
poles, the maximum error is still near the corner frequency, but the error
value depends on the damping ratio of the complex pole pair.

Let’s look at what the z-plane pole at c means. If we use the fact that T (z) is
the ratio of Y(z) over R(z), and cross-multiply and use the shifting property
to get the difference equation that is coded, we get the following equations.

T (z) =
Y(z)
X (z) =

Az
z − c

Y(z)(z − c) = X(z)Az

zY(z) − cY(z) = AzX (z)

Y(z) − cz−1Y(z) = AX (z)

y(n) − cy(n − 1)y(n) = Ax(n)

134

gain, dB

w, rad/s0
a 10a

20log(A/a)

20dB

Figure 9.1 Straight-line Bode plot for gain in dB of single-pole filter

Digital Signal Processing

From the last equation, we can see that c is the b1 coefficient and A is the
a0 of the modified difference equation. Thus, for a first-order system or
filter (one with only one pole), we can finally see that a is the corner
frequency of the analog system and c is the only b coefficient.

Now that we know that a pole at –a gives the corner frequency of the analog
system at a, and that a pole at c gives the b coefficient value of the digital
filter difference equation, we would like to be able to predict the effect of a
change in the b coefficient on the desired corner frequency. We can do this
by using the relationship given earlier between an analog pole at –a and a
z-plane pole at c . This relationship is repeated as Equation 9.1.

c = e−aT
(Equation 9.1)

By taking the natural log of both sides of Equation 9.1, we get Equation
9.2, which is in a more useful form.

a = −1n(c)
T

(Equation 9.2)

This equation says that the smaller the sampling period T , the larger is
the change in a for a given change in c . Example 9.4 uses Equation 9.2
to predict the results found in Example 9.3, but in a much easier way.

Example 9.4. Predicting the change in the analog corner frequency
due to a change in the difference equation b coefficient

Problem: Given the difference equation for y1(n) in Example 9.3 for an IIR
digital filter with a corner frequency at 10 rad/s, determine the percent-
age change in the analog filter corner frequency if the b coefficient of the
difference equation is changed by 10 percent.

Solution: Using Equation 9.2, where c is b1 for the original digital filter
and then b1 for the changed digital filter, and T is 0.01 s, we get the
following equations.

a =
−1n(0.9)

0.01
 = 10.5

a =
−1n(0.8)

0.01
 = 22.3

135

Filter Coefficient Precision

We can see that even using approximate values for the b coefficient, a 10
percent change from 0.9 to 0.8 causes an almost 100 percent change from
10.5 to 22.3 in the corner frequency.

In Example 9.4 we verified the results of Example 9.3 in just a few short
steps using Equation 9.2, where the pole at c represented the b coefficient
of the IIR digital filter. Notice that in Example 9.4 the answer seems to
depend upon the value of the sampling period T . This is shown by
Equation 9.2, where as T decreases the change in a, the change in the
corner frequency of the filter represented by the digital filter, increases
for the same change in b. This is true even though in Chapter 7 we
learned that as T changes, T (z) and thus the b value also change. This is
illustrated in Example 9.5.

Example 9.5. Illustration of the effect of the sampling period on
required coefficient precision

Problem: Repeat Example 9.4 for T = 0.001 s.

Solution: The b1 coefficient (the only b coefficient) for the difference
equation for the first analog filter using the BLT method is now
approximately 0.99, and a reduction of 10 percent approximately gives
0.89 for the new b. Using Equation 9.2 we have the following equations.

a =
1n(.99)
0.001

 = 10

a =
−1n(0.89)

0.001
 = 116

In Example 9.5 we can see that, at least for first-order digital IIR filters,
as the sampling period T is reduced, we get even more sensitivity of the
analog corner frequency accuracy to small percentage changes in the b
coefficient of the difference equation for the corresponding digital IIR
filter. This statement is true qualitatively for higher-order digital IIR
filters.

We have been looking at the property of a digital IIR filter with one pole.
What about digital filters with two or more poles and the number of bits
required to ensure a specified corner frequency accuracy? The effect of
changes due to a lack of precision in the b coefficient of one pole then
becomes more of a qualitative statement about the precision required for
the b coefficients of filters with more than one pole. It can usually predict

136

Digital Signal Processing

the number of bits required to ensure the corner frequency accuracies
within an order of magnitude. This is just the number of decimal digits
required in the coding of the difference equation. If the digital IIR filter
is sampled at a frequency much higher than the corner frequencies of
the analog filter, then the precision required to ensure the accuracy of
the only b coefficient of a one-pole digital IIR filter corresponding to the
lowest corner frequency is a very good estimate of the precision of all the
b coefficients of digital filters with more poles (if all the poles have the
same accuracy specification). This is shown in Example 9.6.

Example 9.6. Determining the precision of the b coefficients of a
two-pole digital IIR filter

Problem: Given the following bandpass filter T (s) with corner frequencies
at 10 and 40 rad/s, estimate the number of decimal digits to the right of
the decimal point that are needed to ensure that the IIR digital filter
obtained using the BLT method approximates the corner frequencies of
the analog filter within 10 percent for T = 0.001.

T (s) =
40s

(s + 10)(s + 40)

Solution: The lowest corner frequency of the analog filter is 10 rad/s. If
we wanted to use this as the only pole of the analog filter and find the
only b coefficient using the BLT method, we would get b = c = 0.99005.
Trying a 1 percent reduction in b, or b = 0.98, gives a = 20, which is a 100
percent change in a. Next try a 0.1 percent change in b. This gives a =
11, or a 10 percent change. Thus we will need to use three decimal digits
to the right of the decimal point to ensure a 10 percent accuracy in the
corner frequencies represented by the digital IIR filter.

In this section we used Example 9.3 to show that there is indeed more
sensitivity to the percentage change of a b coefficient than the percentage
change specified for the corner frequency of the corresponding analog
single-pole filter. Then we used the relationship between the analog and
digital poles for a decaying exponential signal to show this is true for all
single-pole systems. We also used the relationship between the analog and
digital poles to derive Equation 9.2, which gives the change in a, the
corner frequency, given a change in c , the b coefficient. This approach
was used to give confidence to the results by showing the problem and
how the poles are related and what they represent in the analog and

137

Filter Coefficient Precision

digital domains. However, a shorter method could have been used by
using the purely mathematical relationship given in Table 4.1 for c , which
is e–aT . If the natural log is taken of both terms, noting that c = b, then
we immediately get Equation 9.2.

The next question to answer is: Does Equation 9.2 give the change in the
corner frequency of an analog filter with a single zero if the c in the
equation is replaced by an a coefficient rather than a b coefficient? It
turns out this is true. This is true since Equation 6.3 says z = esT . For a real
pole or zero, s = –a, where a is positive. This gives an important
relationship that was given in Table 4.1 for a pole, but can be seen from
the math to apply to poles and zeros. This relationship is shown in
Equation 9.3.

z = e−aT (Equation 9.3)

This relationship is just a mapping between the s-plane and the z-plane
given the sampling period T . We already know that the LHP of the s-plane
goes into the inside of the unit circle of the z-plane. This relationship
gives a more precise relationship between poles and zeros. If there is a
pole or zero at –a in the s-plane, the z-plane will have a corresponding
pole or zero at the value computed by using Equation 9.3. This is the same
relationship that lead to Equation 9.2, and thus this equation can be used
for both poles and zeros of analog filters. This is shown using a single-zero
analog LPF in Example 9.7.

Example 9.7. Determining the change in the analog zero corner
frequency due to a change in the a coefficient

Problem: Given the following analog lowpass filter T (s) with a single zero
with the sampling period T = 0.01. Determine what the percentage
change in the corner frequency of the analog filter would be for a 4
percent reduction in the a coefficient of the corresponding IIR filter
difference equation.

T (s) =
0.25(s + 40)

s + 10

Solution: Using the BLT method gives the digital filter T (z), as shown next.

T (z) =
0.2857z − 0.19046

z − 0.90476
138

Digital Signal Processing

In order to put the numerator in the standard form we used for poles, we
pull out the a0 from both terms in the numerator to get the following
equation.

T (z) =
0.2857(z − 0.6666)

z − 0.90476

The term in the zero factor is really a1/a0 . It is this value that is used for
c in Equation 9.2. A 4 percent reduction in this value of 0.6666 gives the
new c as 0.6400. Using this value in Equation 9.2 for c gives the corner
frequency of the zero of the new analog filter represented by the IIR
difference equation with the new a coefficient, as shown next.

a =
−1n(0.6399)

0.01
 = 44.6

This is an 11.5 percent change in the zero corner frequency for a 4
percent change in the a coefficient ratio of the IIR difference equation.

 9.3 Computing DSP Coefficient Word Length Effects

Equation 9.2 is useful for quantitatively computing the effect of changes
in the b coefficients of the digital filters difference equation and the
change produced in the analog filter corner frequency represented by
the changed digital IIR filter. The equation even gives a good qualitative
estimate of the maximum change allowed in any b coefficient of digital
filters representing multiple pole analog filters. But the equation is hard
to use, since a change in b is assumed and then the change in a, the corner
frequency, is computed and checked to see if it is near the maximum
percentage change allowed. What is needed is an equation where the
specification on the corner frequency a is used to compute the maximum
allowed change in the b coefficient. This is done in this section using
first-semester calculus.

Let’s start with Equation 9.2, where c is the pole or zero in the z-plane,
by taking the derivative of both sides of the equation with respect to c .
This results in the following equations, which result in Equation 9.4.

da
dc

 = −
1
T

(1
c

)

139

Filter Coefficient Precision

da = −
dc
Tc

(da
a

) = −
1

aT
(dc

c
)

(dc
c

)100 = −aT (da
a

)100 (Equation 9.4)

In Equation 9.4, if the infinitesimal differentials were approximated by
small increments in c and a, then for single-pole or zero analog filters the
percentage change in the corner frequency of the pole or zero gives the
percentage change in the corresponding difference equation coefficient.
Remember that for the a coefficients, Equation 9.4 gives a1/a0. Equation
9.4 is valid for small percentage changes in c or a and for analog filters
with single poles or zeros. For multiple poles or zeros, Equation 9.4 gives
qualitative results that are valid within an order of magnitude. Example
9.8 illustrates the use of Equation 9.4.

Example 9.8. Using Equation 9.4 to find the b coefficient
precision for a specified pole corner frequency accuracy

Problem: For the following single-pole analog LPF T (s), determine the
precision required to ensure that the difference equation of the corre-
sponding IIR digital filter will have a corner frequency of the same
accuracy for a sampling period T = 0.002 s. Let the analog filter require
an accuracy of 5 percent for the corner frequency.

T (s) =
50

s + 50

Solution: The analog filter has a corner frequency of 50 rad/s, and a
sampling period T = 0.002 s, while the percentage accuracy for the corner
frequency is 5 percent. Using these values in Equation 9.4 gives the
following equation.

(db
b

)100 = −(0.1)(5) = −0.5 percent

This says that the b1 coefficient (the only b coefficient) must not vary from
the computed value by more than 0.5 percent in order for it to represent

140

Digital Signal Processing

an analog filter with a pole with a corner frequency of 50 rad/s within 5
percent. In order to check this, the BLT method is used to determine the
IIR digital filters for the given T (s) and one with a 5 percent change in
the corner frequency. Then the difference equations for both will be
obtained. It will be seen that the b coefficients of the two difference
equations differ by 0.5 percent. This is done, with the first T (z)
corresponding to the preceding T (s).

T (z) =
4.761 ∗ 10−2(z + 1)

z − 0.90475

T (z) =
4.988 ∗ 10−2(z + 1)

z − 0.90023

y(n) = 0.90475y(n − 1) + 0.04761x(n) + 0.04761x(n − 1)

y(n) = 0.90023y(n − 1) + 4.988 ∗10−2[x(n) + x(n − 1)]

The last difference equation has its b coefficient (0.90023) reduced by 0.5
percent from the difference equation above it. This is exactly what
Equation 9.4 predicted.

 Summary

In this chapter we looked at the precision required in terms of percentage
change allowed in the b1 coefficient of the difference equation of the IIR
filter to ensure it represents the corresponding analog filter within its
specification. The percentage change is due to the number of decimal
digits or binary bits used to code the coefficient, as was discussed in
Section 9.1. The equation that resulted was Equation 9.4, which gives the
percentage change of the b coefficient in terms of the percentage change
of the corner frequency of the analog pole allowed multiplied by the
negative of the sampling period times the analog corner frequency. This
result is applicable to the percentage change allowed for the ratio of a1

over a0 for the coefficient change for a specified analog zero corner
frequency percentage change.

Equation 9.4 is valid only for single-zero or single-pole analog corner
frequencies, or for single-pole and single-zero analog filters. However, it
gives good qualitative results for multiple-pole or zero analog filters when

141

Filter Coefficient Precision

used for the pole or zero with the lowest corner frequency. This
approximation improves when the sampling frequency is much higher
than the corner frequencies. The major result is that many times the
percentage error allowed in the coefficients of an IIR digital filter may be
much less than that of the analog filter corner frequency specifications
to ensure that the digital IIR filter performs to the specifications of the
analog filter it replaces.

 Self-Test

1. Determine the minimum number of bits to the right of the binary
point to ensure that the decimal number 0.175 is coded with a
precision of 5 percent or less.

2. Determine the minimum number of bits to the right of the binary
point to ensure that the decimal number 2.105 is coded with a
precision of 2 percent or less.

3. Determine the percentage change in the b1 coefficient of the differ-
ence equation that would cause a 4 percent change in the correspond-
ing lowpass analog filter T (s) corner frequency it represents for a
sampling time T = 0.04 s.

T (s) =
25

s + 25

4. Determine the percentage change in the b1 coefficient of the differ-
ence equation that would cause the highpass analog filter T (s) it
replaces to have a change in its corner frequency of 10 percent for the
sampling period of T = 0.005 s.

T (s) =
s

s + 100

5. Determine the percentage change in the b1 coefficient of the differ-
ence equation that would cause the lowpass analog filter T (s) it
replaces to have a change in its pole corner frequency of 5 percent for
T = 0.002 s.

T (s) =
0.1(s + 100)

s + 10
142

Digital Signal Processing

6. Determine the percentage change in the ratio of a1/a0 of the
difference equation that would cause the analog filter T (s) repre-
sented by the following IIR digital filter to have a 1 percent change in
its zero corner frequency for T = 0.002 s.

T (s) =
0.1(s + 100)

s + 10

 Problems

1. Determine the minimum number of bits to the right of the binary
point to ensure that the decimal number 0.915 is coded with a
precdision of 2 percent or less.

2. Determine the minimum number of bits to the right of the binary
point to ensure that the decimal number 5.12 is coded with a precision
of 1 percent or less.

3. Determine the percentage change in the b1 coefficient of the differ-
ence equation that would cause a 5 percent change in the correspond-
ing lowpass analog filter T (s) corner frequency it represents for a
sampling time T = 0.02 s.

T (s) =
100

s + 100

4. Determine the percentage change in the b1 coefficient of the differ-
ence equation that would cause the highpass analog filter T (s) it
replaces to have a change in its corner frequency of 2 percent for the
sampling period T = 0.003 s.

T (s) =
s

s + 50

5. Determine the percentage change in the b1 coefficient of the differ-
ence equation that would cause the lowpass analog filter T (s) it
replaces to have a change in its pole corner frequency of 10 percent
with T = 0.001 s.

T (s) =
200

s + 200
143

Filter Coefficient Precision

6. Determine the percentage change in the ratio of a1/a0 of the
difference equation that would cause the analog filter represented by
the following IIR digital filter to have a 2 percent change in its zero
corner frequency for the sampling period T = 0.05 s.

T (s) =
s + 10
s + 30

 Answers to Self-Test

1. 6

2. 4

3. 4 percent

4. 5 percent

5. 0.1 percent

6. 0.2 percent

144

Digital Signal Processing

FIR Filter Des ign

 Introduction

In this chapter we learn how to design a new type of digital filter, the FIR
filter. This filter has no analog filter equivalent. Thus the design methods
of Chapter 7 are not applicable. In that chapter we started with a known
analog filter, since the design methods for analog filters are well known,
and used methods to convert the analog filter to a digital filter. These
methods all resulted in Infinite Impulse Response (IIR) filters. The FIR
filters are digital filters with no b coefficients with which to multiply
previous outputs. Thus, no previous outputs need to be saved or used for
computing. It seems reasonable that there must be a price to pay for this,
and there is. Usually the FIR filter uses many more a coefficients and
corresponding input samples than are saved by not using the b coeffi-
cients and previous outputs. Many times this is not much of a problem.

Because no b coefficients are used for FIR filters, there are no poles of
the z-transfer function describing the digital filter. And since we have seen
that the z-plane is just a modified s-plane, using the relationship z = esT ,
we see that there would be no analog poles as there are in most analog
filters. The advantages of the FIR filter is that the phase can be specified
as linear, which is an advantage in some applications. In analog filters the
phase corresponding to the analog filter that meets your specifications is
just accepted; now it can be designed in, and usually it is chosen to be
linear. The method of designing FIR filters is given in the following
discussion along with some of the limitations of FIR filters. In Chapter 11,

FIR Filter Design

 c h a p t e r
 10

145

we introduce windows, which alleviate some of the effects of not using the
b coefficients along with the previous outputs.

FIR filters are used in many applications where the advantages of linear
phase are needed. Since IIR filters have analog filter equivalents, linear
phase is more difficult to achieve. Their phase is determined by the
placement and order of their poles and zeros. At the end of Chapter 11,
Application 2 illustrates designing and analyzing an FIR filter to deter-
mine the RMS values of signals in a selected band of frequencies, as is
done on most stereo equipment. This application could take advantage
of the linear phase of the FIR filters to do graphical equalization of
recorded sound instead of just displaying its RMS value. Some of the
technical areas in which FIR filters are employed include speech recog-
nition and enhancement, audio recording and equalization, telecommu-
nications, signal and data smoothing, and ultrasound imaging.

 10.1 Introduction to the FIR Filter

As was stated in the beginning of this chapter, we are dealing now with a
digital filter that uses no b coefficients in its difference equation. This
type of filter is called an FIR filter, for Finite Impulse Response filter.
After a finite amount of time after an impulse signal is applied, the output
of this type of digital filter goes to zero and stays there. The modified DSP
equation for an FIR filter is obtained by leaving off the b coefficients and
adding a coefficients with negative subscripts, as shown in Equation 10.1.

y(n) = a0x(n) + a1x(n − 1) + ⋅ ⋅ ⋅ + aNx(n − N)

(Equation 10.1)+a−1x(n + 1) + ⋅ ⋅ ⋅ + a−Nx(n + N)

This looks like a simple equation for a digital filter; all that needs to be
done is derive the a coefficients to meet the filter specifications. However,
a new method needs to be developed to do this, since the FIR filter has
no poles and thus has no corresponding analog filter. These characteris-
tics are derived as follows.

First, let’s get the math description of the FIR filter, T (z), by taking the
z-transform of Equation 10.1, using the shifting property, and then solving
for the output over the input, producing Equation 10.2.

Y(z) = a0X (z) + a1z
−1X (z) + ⋅ ⋅ ⋅ + aNz−NX (z) + a−1zX (z) + ⋅ ⋅ ⋅ + a−NzNX (z)

T (z) =
Y(z)
X (z) = a0 + a1z

−1 + ⋅ ⋅ ⋅ + aNz−N + a−1z + ⋅ ⋅ ⋅ + zNa−N (Equation 10.2)

146

Digital Signal Processing

It can be seen in Equation 10.2 that there are no roots of the
denominator, since there is no denominator. Also, we have seen in
Chapters 8 and 9 that there is a correspondence between the s-plane
poles and the z-plane poles, given by z = esT . Thus any corresponding
analog filter given by T (s) would have no s-plane poles, but this is
limited to only a few analog filters. Yet we will see that any filter
specification can be met by FIR filters; thus essentially there are no
corresponding analog filters. The design methods must be derived
from the FIR filter specifications, instead of using a corresponding
analog filter.

 10.2 The General FIR Coefficient Equation

We must derive the a coefficients from the digital filter frequency
specifications, since there are no analog filters to convert to digital
filters. We already have a method to determine the frequency response
of a digital filter given the transfer function of the filter T (z). This
method is given in Equation 6.4, using T (z). We have just found
T (z) for the FIR digital filter in Equation 10.2. If we knew the a
coefficients, we could use Equation 10.2 to get the T (z) for a specific
filter corresponding to those coefficients. Then we could use Equation
6.4 to find its frequency response or gain plot. What we now need
to do is reverse the preceding steps and determine the coefficients
from the frequency specifications; that is, solve Equation 6.4 for the
coefficients.

Let’s begin by rewriting Equation 10.2 in a more convenient mathematical
form, using the summation notation to get the following equation.

T (z) = ∑
k=−N

N

akz
−k

Let’s also replace z by ejwT in Equation 6.3 to get the following equation
for the frequency response of the FIR filter, where as before Ω = wT .

T (ejΩ) = ∑
k=−N

N

ake
−jkΩ

147

FIR Filter Design

If the magnitude was taken of both sides, the preceding equation would
give the gain, as was done in Equation 6.4 for any digital filter.

Now the left side of the preceding equation is the specified frequency
response, which is known. If it can be solved for the a coefficients, they
can be used in Equation 10.1 to write the difference equation of the
desired FIR filter. The preceding equation can be solved for the a
coefficients, as shown in the following equations.

T (ejΩ) = ∑
k=−N

N

ake
−jΩk

T (ejΩ)ejnΩ = ∑
k=−N

N

ake
jΩ(n − k)

∫
0

2π

T (ejΩ)ejnΩdΩ = ∑
k=−N

N

∫
0

2π

ake
jΩ(n − k)dΩ

= ∑
k=−N

N

∫
0

2π

ak[cos(n − k)Ω + j sin(n − k)Ω]dΩ

= ∑
k=−N

N

[∫
0

2π
ak cos(n − k)ΩdΩ + ∫

0

2π
jak sin(n − k)ΩdΩ]

Now Ω goes over 2π, and the integral of any sine or cosine over (n – k)2π
is always zero, except for n – k = 0. The preceding equation becomes the
following equation, where k = n.

∫
0

2π

T (ejΩ)ejΩndΩ = ∫
0

2π

an cos(0)ΩdΩ + ∫
0

2π

jan sin(0)ΩdΩ

= ∫
0

2π
andΩ = 2πan

Thus we get Equation 10.3, which computes the a coefficients, given the
frequency response specification T (e j

Ω) of the FIR filter, with Ω = wT .

148

Digital Signal Processing

an =
1

2π ∫
0

2π

T (e
jΩ)e

jnΩdΩ (Equation 10.3)

Example 10.1 shows how to use Equation 10.3 to find the FIR a
coefficients, given the filter frequency specification.

Example 10.1. Finding the a0 and a2 FIR filter coefficients for an
LPF

Problem: Let the frequency specification of the LPF be the gain = 1 to 25
Hz, and gain = 0 beyond. Also let the sampling period T = 0.002 s.

Solution: Since Ω = wT , we have that the gain is 1 from Ω = 0 to 0.1π and
from 1.9π to 2π, since the frequency spectrum is repeated and symmetri-
cal about π. Using this in Equation 10.3 gives the following equations.

an =
1

2π ∫
0

0.1π

e
jnΩdΩ +

1
2π ∫

1.9π

2π

e
jnΩdΩ

=
1

2π ∫
−0.1π

0.1π

e
jnΩdΩ

Evaluating the integral gives the following equations for n not equal to
zero, and n = 0.

an = [
e

jnΩ

jn2π
]−0.1π

0.1π , for n not equal

zero

a0 = 0.1

Using n = 2 in the first equation gives the following equations for a2.

a2 =
e0.2πj − e−0.2πj

2π(2j)

a2 =
cos(0.2π) + j sin(0.2π) − cos(−0.2π) − j sin(−0.2π)

2π(2j)

a2 =
sin(0.2π)

2π
149

FIR Filter Design

The final equation for a2 was derived using the fact that sin(–a) = –sin(a),
and cos(–a) = cos(a).

In Example 10.1, the fact that all digital filters and filter specifications are
periodic, with a period of the sampling frequency, allowed the integration
to be simplified by changing the limits to give a similar but simpler
integral to be evaluated. This can be done for other filters, too. All that
is required is that Equation 10.3 be integrated over 2π radians. Since
solving Equation 10.3 is tedious, we solve it for the four basic ideal types
of filters with arbitrary pass and stop frequencies in the next section.

 10.3 The Basic Solutions of the Coefficient Equation

The ideal lowpass digital filter specification is given in Figure 10.1. Using
the values given in Figure 10.1 in Equation 10.3 gives the following
integral equation and its algebraic solution, where Ωp is the ideal pass and
stop frequency with no transition region between them.

an =
1

2π ∫
−Ωp

Ωp

e
jnΩdΩ

a0 =
Ωp

π
(Equation 10.4a)

an =
sin(nΩp)

nπ
, for n not equal to 0

(Equation 10.4b)

150

gain

1

Ω
−Ω p Ωp π π2

Figure 10.1. Ideal LPF graphical specification using Ω = wT

Digital Signal Processing

The ideal highpass digital filter specification is given in Figure 10.2. Using
the values and symbols in Figure 10.2 in Equation 10.3 gives the following
integral equation and its algebraic solutions, where again Ωp is the ideal
pass and stop frequency with no transition region.

an =
1

2π ∫
Ωp

2π − Ωp

e
jnΩdΩ

a0 =
π − Ωp

π
(Equation 10.5a)

an =
−sin(nΩp)

πn
, for n not equal to zero (Equation 10.5b)

The ideal bandpass filter is shown in Figure 10.3. Using the values shown
in Figure 10.3 in Equation 10.3 gives the following integral equation and
algebraic solutions, where Ω1 is the lower passband and stopband
frequency, and Ω2 is the upper passband and stopband frequency. Again,
both transition bands do not exist.

an =
1

2π ∫
Ω1

Ω2

e
jnΩdΩ +

1
2π ∫

−Ω2

−Ω1

e
jnΩdΩ

a0 =
Ω2 − Ω1

π
(Equation 10.6a)

an =
1

πn
[sin(nΩ2) − sin(nΩ1)], for n not equal to zero.

(Equation 10.6b)

151

gain

1

−Ω Ω π π
Ω

p p 2

Figure 10.2. Ideal HPF graphical specification using Ω = wT

FIR Filter Design

The ideal bandstop filter specification is shown in Figure 10.4. Using the
values and variables shown in Figure 10.4 in Equation 10.3 gives the
following integral equation and algebraic solutions, where again the lower
passband and stopband frequency is Ω1 and the upper passband and
stopband frequency is Ω2, with no transition regions.

an =
1

2π ∫
−Ω1

Ω1

e
jnΩdΩ +

1
2π ∫

Ω2

2π−Ω2

e
jnΩdΩ

a0 =
π + Ω1 − Ω2

π
(Equation 10.7a)

152

gain

1

Ω
−Ω1 Ω1 Ω2 π 2π

Figure 10.3. Ideal BPF graphical specification using Ω = wT

gain

1

−Ω1 Ω1 Ω2 π 2π
Ω

Figure 10.4. Ideal BSF graphical specification using Ω = wT

Digital Signal Processing

an =
1

nπ[sin(nΩ1) − sin(nΩ2)], for n not equal to zero (Equation 10.7b)

These various algebraic equations can be used to solve for the a
coefficients of the four basic ideal digital filter specifications. Example
10.2 does this for the first two coefficients of the lowpass filter in Example
10.1, and Example 10.3 does this for a bandpass filter.

Example 10.2. Finding the first two FIR coefficients with
nonnegative subscripts for the lowpass filter of Example 10.1

Problem: The lowpass filter gain is given as 1 from 0 to 25 Hz, and zero
beyond 25 Hz. The sampling period is 0.002 s.

Solution: Using the sampling period of 0.002 s gives Ωp = 0.002(2π)25 =
0.1π, which gives the following equations for the first two coefficients.

a0 = 0.1

a1 =
sin(0.1π)

π

Example 10.3. Finding the first two coefficients with nonnegative
subscripts for an ideal FIR bandpass filter

Problem: Let the gain of the filter be 1 between 25 and 100 rad/s and zero
everywhere else. The sampling period is T = 0.01 s.

Solution: For a sampling period of 0.01 s, the values of the passband
frequencies are computed as follows.

Ω1 = 0.01(25) = 0.25

Ω2 = 0.01(100) = 1.00

Using these values in the algebraic solutions for the bandpass FIR
coefficients gives the following values.

a0 =
1.00 − 0.25

π =
0.75

π
153

FIR Filter Design

a1 =
1
π[sin(1) − sin(0.25)] =

0.594
π

Examples 10.2 and 10.3 show how easy it is to compute the a coefficients
for a digital FIR filter, using the algebraic solutions of Equation 10.3 for
the four basic ideal filters. However, the number of coefficients to
compute was left undetermined, except that Equation 10.3 was developed
for as many coefficients with negative subscripts as positive. All that can
be said at this point is that the filter coded using a difference equation
with more coefficients is closer to the ideal filter than one that is not. This
means that the transitions regions get narrower, and the ripple in the
passband and stopbands is reduced as the number of coefficients used is
increased.

 10.4 Use of the Basic Solutions

Since there is no analog filter that corresponds to the FIR digital filter,
FIR filter design using Equations 10.4 through 10.7 requires the designer
to start from the ideal filter graphical specifications. This procedure is
shown using Mathcad in Example 10.4 for a lowpass filter. The use of
Mathcad is not necessary; it is used only to speed up repetitive calcula-
tions, which could be done on a calculator or another mathematical
program.

From the graphical specifications the corner frequencies of interest are
determined. Since the ideal filters have no transition regions, the highest
frequency in the passband corresponds to the lowest frequency in the
stopband for a lowpass filter. This is also the case for the upper stopband
for a passband filter or the lower passband for a stopband filter. Similarly,
the lowest frequency in the passband corresponds to the highest fre-
quency in the stopband for a highpass filter. This is also the case for the
lower stopband for a passband filter or the upper passband for a stopband
filter. These corner frequencies are then multiplied by the sampling
period T and used in the appropriate equation, using Equations 10.4
through 10.7, where Ω = wT .

Notice that in Equations 10.4 through 10.7 the coefficients are the same
for negative or positive subscripts. These are called symmetrical coef f i-
c ients, and thus only about half the coefficients need to be computed.
This form of coefficients gives the most widely applicable FIR filters. Next,

154

Digital Signal Processing

the coefficients are multiplied by their corresponding sampled input
signal as shown in Equation 10.1 and summed to get the current output
signal y(n). Notice that in Equation 10.1 the input samples with argu-
ments greater than n correspond to samples that have not occurred yet.
This gives the noncausal f orm of the FIR filter and is not a problem if the
input samples consist of previously stored data. However, for real-time FIR
filters the output value corresponding to y(n) must be delayed until all
the input samples needed are available. This leads to the causal f orm of
the FIR filter, which is discussed in section 10.5. For now, we will proceed
with the design of the noncausal FIR ideal filter.

The only thing not known in the preceding discussion is the number of
positive subscripted coefficients to compute. Using mathematical pro-
grams to compute the coefficients and plot the frequency response using
the methods in Chapter 6 alleviates this problem. In Example 10.4 using
Mathcad, the number of coefficients with positive subscripts N and thus
the filter length 2N + 1 are easily determined by seeing if the plotted gain
curve meets the original graphical specification. If it does not, the value
of N is increased. The design of an ideal lowpass FIR filter is shown in
Example 10.4 using Mathcad. Figure 10.5 is the gain plot in dB for N =
4 used in Example 10.4. If the value of N in Example 10.4 is increased to
8, then the gain plot in dB in Figure 10.6 is obtained. The filter plotted
in Figure 10.6 has a narrower transition region and lower ripple in the
passband and stopband.

Example 10.4. Using Mathcad to Design and Check FIR LPF
Design

155

π

π

FIR Filter Design

 10.5 The Causal (Real Time) and Noncausal Filter Coefficients

We have found a way to design an FIR digital filter of the form of Equation
10.1. The problem is that this is the input-output difference equation for
a noncausal digital filter. T his means that it doesn’t f ollow the usual cause
then ef f ec t process, in that the output occurs before all the input needed
is available. This can be seen by looking at the inputs with arguments
greater than n. These arguments mean that they are input samples taken
later than the nth sample, but the nth input and output samples are the
current samples. As an example, x(n + 1) is the sample value of the input
taken one sample later than the time corresponding to the output sample
y(n) that uses it. There is no problem in using noncausal digital filters if
the input samples have been stored ahead of time, and then digital
filtering is done on the stored data. This is illustrated in Example 10.5.

156

Figure 10.5. FIR lowpass filter gain for N = 4

Digital Signal Processing

Example 10.5. Using a noncausal filter on stored data

Problem: Use a very simple lowpass filter with N = 1 to smooth the following
noisy data points stored in computer memory.

x(0) = 1

x(1) = 0.7

x(2) = 1.1

x(3) = 1.3

x(4) = 0.8

x(5) = 1.1

x(6) = 0.9

Solution: A very simple lowpass (smoothing) digital filter is given by the
following equation, which is noncausal because x(n + 1) is needed to
compute the smoothed output value at the nth sample. This is no problem
using the given stored data.

y(n) = 0.333x(n + 1) + 0.333x(n) + 0.333x(n − 1)

Using this FIR filter on the given data, we get the following smoothed
output data.

157

Figure 10.6. FIR lowpass filter gain for N = 8

FIR Filter Design

y(1) = 0.933

y(2) = 1.033

y(3) = 1.066

y(4) = 1.066

y(5) = 0.933

It can be seen that there was no problem in computing the digital FIR
filter outputs, except for the end points, where there was insufficient
data. The smoothed signal out of the filter varied between 0.933 and
1.066, while the unfiltered input data varied between 0.7 and 1.3. If
the variation on the input data was due to noise, then the smoothed
output data is a better representation of a slowly varying input signal
that is now around 1.

However, if the input signal is just coming in and the current value of the
digital FIR filter is needed at the time corresponding to its sample
number, there is a problem. The only solution is to delay the computation
of the output until all the data is available. Thus the output value is
delayed by N samples and the value is correct, but it is nT seconds late.
In Example 10.5, if the input signal was just coming into an A/D, the
output sample would be delayed by T seconds until the next sample after
the current one was received to use in the computation. There is no way
around this effect, but to make the computation easier the digital FIR
filter is written in the causal form by shifting the sample numbers of the
input signal and their corresponding subscripts so that they start at the
current sample number n and count down to previous sample numbers.
This reduction of the input sample arguments by N and changing the
coefficient subscripts to correspond to the new arguments give the causal
form of the FIR filter. This is not a solution, it just computes the output
samples late by N sample periods. This is illustrated by redoing Example
10.5 in Example 10.6, using the causal form of the FIR filter.

Example 10.6. Using a causal lowpass filter to smooth noisy data

Problem: The noisy data is again given in Example 10.5, but now the
original noncausal filter is changed into its causal form so that it can work
on the input signal as it comes in.

158

Digital Signal Processing

Solution: The original noncausal filter is repeated here.

y(n) = 0.333x(n + 1) + 0.333x(n) + 0.333x(n − 1)

Since N = 1 in the noncausal filter, the new causal equation is gotten by
subtracting 1 from the arguments of the sampled signal. This gives the
following causal equation.

y(n) = 0.333x(n) + 0.333x(n − 1) + 0.333x(n − 2)

This causal equation gives the following outputs when there is sufficient
input data to compute the output.

y(2) = 0.933

y(3) = 1.033

y(4) = 1.066

y(5) = 1.066

y(6) = 0.933

When these values are compared to the noncausal filter outputs of
Example 10.5, it is seen that they are the same except delayed by one
sampling period. There is no way around requiring input samples that
have not occurred in real-time filters except to wait until the data is
available.

In Example 10.6 the coefficients were already converted to numerical
values. If the coefficients are still symbolic, then the coefficient subscripts
must be modified to correspond to the new arguments of the correspond-
ing filter. Remember, all that is really done is to wait until the data needed
is available so that the relationship of the coefficient to its sample is
unchanged. This is illustrated in Example 10.7.

Example 10.7. Changing a general noncausal FIR filter equation
to the causal form

Problem: Find the causal form of the following general noncausal FIR
digital filter equation.

y(n) = a−2x(n + 2) + a−1x(x + 1) + a0x(n) + a1x(n − 1) + a2x(n − 2)

159

FIR Filter Design

Solution: In this noncausal equation, N = 2. If the arguments of the input
sample are reduced by this, then all the data required is available, it’s just
that the output is late by two sample periods. The new causal form of the
noncausal equation of the FIR digital filter is given by the following
equation, after the coefficient subscripts are also changed.

y(n) = a0x(n) + a1x(n − 1) + a2x(n − 2) + a3x(n − 3) + a4x(n − 4)

From this equation it can be seen that what is being computed is really
the value of y(n – 2), but it is being used for the y(n) value. You can’t
change reality by renaming some values.

 Summary

In this chapter we learned to design a new type of digital filter, the FIR
filter. The input-output difference equation for this filter is given in
Equation 10.1. It has no b coefficients, but has a coefficients with positive
and negative subscripts. In this form the FIR filter is called noncausal
because inputs that have not occurred are required to compute the
output.

The a coefficients are solved for by equating the frequency response of
the FIR filter transfer function T (z) to the desired frequency response to
get Equation 10.3. Equation 10.3 is solved for the four basic ideal digital
filter graphical specifications in Figures 10.1 through 10.4 to get Equa-
tions 10.4 through 10.7 for the corresponding a coefficients. The method
of transforming the noncausal FIR difference equation into a causal form
with a delay of N T seconds is given in Section 10.5. The arguments of
the input samples are reduced by N, and the coefficient subscripts are
increased by N , so that no future samples are used.

 Self-Test

1. Use Equation 10.4 to determine the a0 and a1 coefficients for an FIR
lowpass digital filter with Ωp = 0.25π.

2. Use Equation 10.4 to determine the a2 and a–1 coefficients for an FIR
lowpass digital filter with Ωp = 0.5π.

160

Digital Signal Processing

 3. Use Equation 10.5 to determine the a0 and a3 coefficients for a
highpass FIR digital filter with Ωp = 1.25.

 4. Use Equation 10.5 to determine the a10 coefficient for a highpass FIR
digital filter with a gain of zero out to 25 rad/s and then 1 thereafter.
Let the sampling period T = 0.02 s.

 5. Use Equation 10.6 to determine the a1 coefficient for a bandpass FIR
digital filter with Ω1 = 0.5 and Ω2 = 1.0.

 6. Convert the following noncausal FIR filter to its causal form.

 y(n) = 0.24x(n + 2) + 0.5x(n + 1) + x(n) + 0.5x(n − 1) + 0.24x(n − 2)
 7. Convert the following noncausal FIR digital filter to its causal form.

y(n) = a−2x(n + 2) + a−1x(n + 1) + a0x(n) + a1x(n − 1) + a2x(n − 2)

 8. Use Equation 10.7 to determine the a0 and a2 coefficients for a
stopband FIR filter with Ω1 = 0.2 and Ω2 = 1.2.

 9. Use Equation 10.6 to determine the a0 and a2 coefficients for a
bandpass FIR filter with Ω1 = 0.2 and Ω2 = 1.2.

10. Determine the a0 and a1 coefficients for a lowpass FIR filter using
Equation 10.4, where the desired ideal passband and stopband
frequency is 25 rad/s and the sampling period T = 0.01 s.

11. Determine the a0 and a1 coefficients for a lowpass FIR filter using
Equation 10.4, where the desired ideal passband and stopband
frequency is 50 rad/s and the sampling period T = 0.01 s.

12. Use Mathcad with Equation 10.4 to determine the nine a coefficients
from a–4 to a4 for an FIR lowpass digital filter with Ωp = 0.7π.

13. Use Mathcad with Equation 10.6 to determine the eleven a
coefficients from a–5 to a5 for an FIR bandpass filter with Ω1 = 1.0
and Ω2 = 1.5.

14. Use Mathcad with Equation 10.5 to determine the nine a coeffi-
cients from a–4 to a4 for an FIR highpass filter where the ideal
passband and stopband frequency is 100 rad/s and the sampling
period is T = 0.017 s.

161

FIR Filter Design

 Problems

 1. Use Equation 10.4 to determine the a–2 and a0 coefficients for an FIR
lowpass filter with Ωp = 0.5π.

 2. Use Equation 10.4 to determine the a–10 and a5 coefficients for an
FIR lowpass filter with Ωp = 0.2π.

 3. Use Equation 10.5 to determine the a0 and a2 coefficients for a
highpass FIR filter with Ωp = 0.25π.

 4. Use Equation 10.5 to determine the a–4 coefficient for a highpass FIR
filter with a gain of zero out to 50 rad/s and 1 thereafter for a
sampling period T = 0.03 s.

 5. Use Equation 10.6 to determine the a4 coefficient for a bandpass FIR
filter with Ω1 = 2.1 and Ω2 = 2.9.

 6. Convert the following noncausal FIR filter to its causal form.

 y(n) = 0.105x(n + 3) + 0.205x(n + 2) + 0.30x(n + 1)

 + 0.35x(n) + 0.30x(n − 1) + 0.205x(n − 1) + 0.105x(n − 3)

 7. Convert the following noncausal FIR filter to its causal form.

y(n) = a−3x(n + 3) + a−2x(n + 2) + a−1x(n + 1)

+ a0x(n) + a1x(n − 1) + a2x(n − 2) + a3x(n − 3)

 8. Use Equation 10.7 to determine the a0 and the a5 coefficients for a
bandstop FIR filter with Ω1 = 1.2 and Ω2 = 2.2.

 9. Use Equation 10.6 to determine the a0 and the a–5 coefficients for a
bandpass FIR filter with Ω1 = 1.2 and Ω2 = 2.2.

10. Determine the a0 and the a2 coefficients for a lowpass FIR filter using
Equation 10.4, where the desired ideal passband and stopband
frequency is 100 rad/s and the sampling period T = 0.02 s.

162

Digital Signal Processing

11. Determine the a1 and a4 coefficients for a highpass FIR filter using
Equation 10.5, where the desired ideal passband and stopband
frequency is 100 rad/s and the sampling period T = 0.02 s.

 Answers to Self-Test

1. 0.25, 0.225

2. 0, 0.318

3. 0.602, 0.061

4. 0.031

5. 0.115

6. y(n) = 0.24x(n) + 0.5x(n − 1) + x(n − 2) + 0.5x(n − 3) + 0.24x(n − 4)

7. y(n) = a0x(n) + a1x(n − 1) + a2x(n − 2) + a3x(n − 3) + a4x(n − 4)

8. 0.682, –0.0455

9. 0.314, 0.0455

10. 0.0796, 0.0788

11. 0.159, 0.152

12. a–4 = 0.0468, a0 = 0.7

13. a–5 = 0.121, a0 = 0.159

14. a–4 = –0.393, a0 = 0.459

163

FIR Filter Design

Wind ows fo r F IR Filt ers

 Introduction

In this chapter we see that FIR filters have poor gain characteristics for
ideal filters, which have a jump between one and zero. We have seen in
Chapter 10 that as the number of coefficients was increased, the transition
region for the actual FIR filter decreased and the ripple in the passbands
and stopbands was reduced. However, there is a limit to the reduction in
the amplitude of the ripple as the number of coefficients used is
increased. This is called the Gibbs effect. This effect is due to the jump
between zero and one of the ideal gain curves. In order to reduce this
effect, the actual values of the FIR coefficients are reduced near where
they start and end. This is called windowing. There is no one best window,
and several are introduced in this chapter. Two other methods of
reducing the Gibbs effect are also discussed briefly.

 11.1 The Gibbs Effect

In Chapter 10 we learned to compute the a coefficients for the difference
equation of an FIR digital filter. We saw in Figures 10.5 and 10.6 that as
the number of coefficients computed and used increased, the gain of the
filter approached the ideal lowpass filter. The transition region got
smaller and the ripple in the passband and stop band was reduced.
However the ripple was moved closer to where the jump in gain occurred
in the ideal filter gain plot. In the limit, when very many coefficients are

Windows for FIR Filters

 c h a p t e r 11

165

used, the ripple is very narrow and centered about the ideal filter jump
frequency, and the ripple amplitude approaches 9 percent of the jump
value. This is called the Gibbs effect. It can be seen in Figure 11.1, where
the example used in Figure 10.5 and 10.6 is used again, but the number
of positive subscripted coefficients N is now 20. This is just Example 10.4,
a lowpass FIR filter, with forty-one coefficients and more sample points
on the frequency axis. Also, gain instead of gain in dB is plotted to show
the Gibbs effect in the passband more effectively. As can be seen by
comparing Figures 10.5, 10.6, and 11.1, the gain in the lowpass filter is
approaching the ideal shown in Figure 10.1, but the ripple is converging
about Ωp = 1 and is approaching a limit of about 1.09 in amplitude.

In order to reduce the Gibbs effect, the coefficient magnitudes are
reduced as their subscripts approach N and –N . This is called windowing,
since the effect may be thought of as looking at the FIR filter coefficients
through a window that reduces their amplitude at the edges of the
window. After windowing, the new FIR filter coefficients are multiplied by
the window coefficients. This is illustrated in Figure 11.2. In order to talk
about windowing in general, FIR filter coefficients that have not been
windowed are said to be rectangular windowed (with all window coeffi-
cients having a value of 1 from N to –N).

Windowing will cause the magnitude of the ripple to decrease but
increase the width of the transition band. There are many ways to reduce
the end coefficients, and several are given in this chapter. Some are easy
to compute, while others are more complicated to compute. Engineering
judgment is used to decide the best method to use for the particular FIR
filter and its specifications. Because of the symmetry of the noncausal

166

Figure 11.1. FIR lowpass filter gain for N = 20

Digital Signal Processing

coefficients, the window weighting factors are computed for the non-
causal coefficients. Section 11.2 discusses the formulas for several windows
and their advantages and disadvantages.

 11.2 Several Windows

The Bartlett Window

The easiest window coefficients to compute are the Bartlett coefficients.
They simply are weighting factors for the noncausal FIR filter coefficients
that linearly decrease from 1 for multiplying a0 to 0 for multiplying the
aN coefficient. Since the Bartlett and noncausal FIR filter coefficients are
symmetrical, only the Bartlett coefficients for the a coefficients sub-
scripted from 0 to N need to be computed. Equation 11.1 gives the
formula for computing the Bartlett coefficients, and a plot of these values
is given in Figure 11.3.

kn = k−n =
N − n

N
 for n between 0 and N (Equation 11.1)

As can be seen in Figure 11.3, the plot of the Bartlett coefficients is a
triangle going from –N to N with the values going from 0 to 1 and back to 0
again. The Bartlett window coefficients are the easiest to compute, but they
give the widest transition band for the given amount of ripple reduction.
Example 11.1 shows the computation and use of the Bartlett window coef-
ficients for Example 10.4, with N = 20 as shown in Figure 11.1 without
windowing. The new windowed filter gain is plotted in Figure 11.4.

167

n
0

1

1 2 N−1−2−N

a
a

a

general window

1
2

N

Figure 11.2. General windowing of FIR coefficients

Windows for FIR Filters

Example 11.1. Computing and using the Bartlett window
coefficients on a lowpass FIR filter

Problem: Given the lowpass filter specifications in Example 10.4, compute
the Bartlett window coefficients using Equation 11.1 for N = 20. Then
apply them to the noncausal filter coefficients to produce the windowed
noncausal filter coefficients, and plot the gain using Mathcad.

Solution:

168

Figure 11.3. Bartlett window coefficients for N = 20

π

π

Digital Signal Processing

From Figure 11.4 it can be seen that using the Bartlett window on the
lowpass FIR filter for N = 20 has reduced the ripple but increased the
transition region compared to the same unwindowed lowpass FIR filter,
which was plotted in Figure 11.1. In many cases this reduction in ripple
is preferable to the increase in the transition region.

169

n

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

an

0.268

0.145

0.015

0.06

0.061

0.015

0.03

0.039

0.015

0.017

0.029

0.014

0.01

0.023

0.014
.5.728 10 3

0.018

0.013

bkn

0.95

0.9

0.85

0.8

0.75

0.7

0.65

0.6

0.55

0.5

0.45

0.4

0.35

0.3

0.25

0.2

0.15

0.1

ab n

0.254

0.13

0.013

0.048

0.046

0.01

0.019

0.024
.8.017 10 3

.8.658 10 3

0.013
.5.693 10 3

.3.601 10 3

.6.757 10 3

.3.45 10 3

20

.2.511 10 3 0.05

.2.7 10 3

.1.146 10 3

.1.328 10 3

0.015 0

1.255 .10 4

0

Windows for FIR Filters

The von Hann Window

Another window is the von Hann, which requires more complex
computation of the coefficients, but causes less widening of the tran-
sition region. The coefficients for the von Hann window are computed
using Equation 11.2.

kn = k−n = 0.5{1 − cos[
π(N − n)

N
]}

(Equation 11.2)

By looking at Equation 11.2 it can be seen that the von Hann coefficients
go from 0 to 1 and back to 0 as n goes from –N to 0 and then to N . This
is the same thing that the Bartlett coefficients do, but the von Hann
coefficients smooth out the changes in slope of the lines going through
the window coefficients so that there is no break at –N , 0, and N , as there
was with the Bartlett coefficients. This is shown in Figure 11.5. Example
11.2 uses the von Hann window on the same lowpass filter used in
Example 11.1. The resulting gain is plotted in Figure 11.6.

170

Figure 11.4. Bartlett windowed FIR lowpass filter gain for N = 20

Figure 11.5. Von Hann window coefficients for N = 20

Digital Signal Processing

Example 11.2. Computing and using the von Hann window
coefficients on a lowpass FIR filter

Problem: Use Equation 11.2 to compute the von Hann window coefficients
for the lowpass FIR filter used in Example 11.1 with N = 20 again. This is
the same ideal lowpass filter used in Example 10.4 with wp = 100 and the
sampling period T = 0.01.

Solution:

171

π

π

π

Windows for FIR Filters

By comparing Figure 11.6 using the von Hann window coefficients to
Figure 11.4 using Bartlett window coefficients, it is seen that the von Hann
windowed FIR filter approaches the ideal lowpass filter more closely. The
gain in Figure 11.6 is closer to 1 in the passband and has a narrower
transition region. However, the computation of the von Hann coefficients
is more complex. Usually the coefficients are precalculated and stored in
memory, so the extra computation required for the von Hann coefficients
is not important.

172

n

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

an

0.268

0.145

0.015

0.06
0.061

0.015

0.03
0.039

0.015

0.029

0.014

0.01

0.023

vkn

0.994

0.976

0.946

0.905

0.854

0.794

0.727

0.655

0.578

0.5

0.422

0.345

0.273

0.206

avn

0.266

0.141

0.014

0.054

0.052

0.012

0.022
0.026

.8.428 10 3

.8.658 10 3

0.012
.4.917 10

3

.2.809 10 3

16

17

18

19

20
0

.1.546 10 5

.3.25 10
4

.9.81 10
4

.5.469 10 4

. 32.021 10

. 34.642 10

0

0.095

0.054

0.024

0.146

0.015

.2.511 10 3

0.017

0.013
0.018

0.014
.5.728 10 3

.6.156 10 3

Figure 11.6. Von Hann windowed FIR lowpass filter gain for N = 20

Digital Signal Processing

The Hamming Window

The Hamming window coefficients are computed using Equation 11.3.
This equation is slightly more complex than the von Hann window
coefficient equation. The only difference is that the constant and cosine
terms are not both multiplied by 0.5 as in Equation 11.2, but rather each
has its own multiplier. This makes the Hamming window a slight
improvement over the von Hann window.

kn = k−n = 0.54 − 0.46 cos

π ∗

(N − n
N

(Equation 11.3)

As for the previous window coefficients, Equation 11.3 shows that they
start at 0, go to 1, and then go to 0 again as n runs from –N to 0 and then
to N . Example 11.3 computes the Hamming window coefficients for the
same ideal lowpass FIR filter used in the previous examples for N = 20.
Figure 11.7 gives the gain curve of the Hamming windowed FIR lowpass
filter.

Example 11.3. Calculating and using the Hamming window
coefficients on a lowpass FIR filter

Problem: Given an ideal lowpass FIR filter with wp = 100 rad/s, the sampling
period T = 0.01s, and N = 20, compute the Hamming window coefficients
and plot the windowed gain.

Solution:

173

π

π

Windows for FIR Filters

174

π

Digital Signal Processing

Figure 11.7 shows that the Hamming windowed gain is almost identical
to the von Hann windowed gain for the lowpass filter used in all the
examples of windowing. However, when a closer look is taken at the
stopband by using gain in dB, it can be seen that there is a decrease in
the stopband gain as the windowing goes from Bartlett to von Hann to
Hamming in Figures 11.8a, 11.8b, and 11.8c, respectively. A correspond-
ing reduction in the error in the passband could be seen if the previous
plot were blown up around the passband gain of 1.

 11.3 Non-Windowing Approaches

There are other ways to reduce the Gibbs effect than using windows,
although windows are very popular and easy to use. Two other ways are
mentioned here. There is nothing wrong with the coefficient integral
equation developed in Chapter 10 for computing FIR coefficients. It was
developed using correct mathematics, and it gives the correct values for
each coefficient of an FIR filter given the ideal gain specifications for the
four basic types of filters. The problem occurred because we are using
only 2N + 1 coefficients. In that case we have seen that modifying the
coefficients with windowing produced better results in terms of ripple
reduction versus widening of the transition region. One way around this
problem is to make the coefficients converge faster by eliminating the
jump included in the gain specifications for ideal filters; another is to
mathematically find the coefficients that give equal ripple in the
stopband. These two approaches are discussed next.

175

Figure 11.7. Hamming windowed FIR lowpass filter gain for N = 20

Windows for FIR Filters

Jump Elimination in the Filter Specification

Since using only 2N + 1 coefficients creates a transition region in the gain
curve instead of the jump in the ideal specifications, one way to reduce
the Gibbs effect is to specify the transition region anyway. This eliminates
the jump in the ideal filter gain by including the specification of the
transition region, which will appear anyway. Example 11.4 does this for
the lowpass FIR filter used for all the previous examples in this chapter,
with N = 20 again. The resulting gain curve is plotted in dB in Figure 11.9
along with the same filter gain with rectangular windowing (no window-
ing or correction for the Gibbs effect).

Example 11.4. Computing and using the FIR coefficients for a
lowpass FIR filter with a transition region specified

Problem: Compute and use N = 20 FIR filter coefficients for a lowpass filter

176

Figure 11.8a. Bartlett windowed FIR lowpass filter gain for N = 20

Figure 11.8b. Von Hann windowed FIR lowpass filter gain for N = 20

Digital Signal Processing

with wp = 100 rad/s and the sampling period T = 0.01. The transition
region is specified to be 10 percent of the passband.

Solution:

Figure 11.8c. Hamming windowed FIR lowpass filter gain for N = 20

π

π

177

Windows for FIR Filters

As can be seen in Figure 11.9, the specification of a transition region of
10 percent of the passband width has reduced the ripple in the stopband.
However, an enlargement of the passband gain would show a slight
increase in the passband ripple. Depending on the specifications, this
method could be an improvement over the rectangular windowed FIR
filter, but is not as good as the von Hann or Hamming windowed gain.

Parks-McClellan Method

The Parks-McClellan method does not use the integral equation devel-
oped in Chapter 10, which is mathematically correct. But since only
2N + 1 coefficients are used, the resulting rectangular windowed
approximation has ripple in the passband and stopband that is undesir-
able. One way to handle this ripple is to require it to have equal peaks

178

0 100 200 300
40

20

0

gaindB
k

gainadB k

w
k

Figure 11.9. Comparison of lowpass filter gains with and without a transi-
tion region specified

π

Digital Signal Processing

throughout the passband and stopband. Unfortunately, equations to solve
for this require knowledge of the frequencies at which the equal
amplitude peaks occur. This leads to mathematics beyond the scope of
this text. The problem is solved numerically by using the Remez exchange
algorithm. Once it determines the frequency of the peaks, it is a relatively
simple matter to solve for the coefficients that have equal amplitudes at
these peaks. Figure 11.10 shows the gain in dB using the Parks-McClellan
coefficients for the lowpass FIR filter with N = 20 used throughout this
chapter. It should be pointed out that the Remez exchange algorithm
works pretty well, but it is not guaranteed to find a solution. The
Parks-McLellan coefficients can be obtained by using the Remez function
in the Mathcad signals pack.

 Application 2

Problem: Design a digital filter to be used to determine the relative
magnitudes of signals in a certain frequency band for a stereo equalizer
display. Only the design for the band between 500 and 2000 Hz, centered
at 1000 Hz, will be shown. Once the digital filter is designed, the relative
magnitude of the signals in the filter bandwidth can be approximated by

0.0

–12.0

–24.0

–36.0

–48.0

–60.0
1.0 10.0

Frequency (Hz)
100.0

G
ai

n
(d

B
)

Figure 11.10. Parks-McLellan LP FIR, N = 20

179

Windows for FIR Filters

digitally squaring the output samples, summing them over one cycle of
the center frequency, and taking the square root of the result. This is the
root-mean-square value or RMS value. This value can then be displayed
by the processor as the height of a vertical bar, as is done on many stereos.

Solution: Let’s try an FIR filter to select the sinusoidal components of the
signal that have frequencies in the bandwidth of interest. Thus we need
to first design (find the coefficients of) an ideal bandpass filter centered
at 1 kHz. We know that by only using a finite number of ideal coefficients,
we will produce the Gibbs effect as well as a finite transition band. So let’s
start with an ideal filter specification where the ideal passband lies
between 750 Hz and 1500 Hz, since there will be a transition band due
to the limited number of coefficients used.

In order to draw the ideal graphical filter specification, we need to select
the sampling rate. Let’s assume that this is a low-quality stereo and that
the highest frequency in the signal is below 10 kHz. Then the Nyquist
limit is satisfied if the sampling period is 0.00005 s, since this gives a
sampling frequency of 20 kHz. Using the data given here, the ideal
graphical specification is shown in Figure 11.11, since Ω = 2*π*f*T.

Equation 10.6 gives the algebraic equation to use to compute the
noncausal ideal FIR coefficients for a bandpass filter. Using this equation
in Example 10.4 instead of Equation 10.4 for the lowpass filter coeffi-
cients, we get the gain plot in dB shown in Figure 11.12 for N = 10, or 21
coefficients. As this figure shows, the bandpass filter with N = 10 has a
peak gain of about –2 db and is below –dB at 500 and 1500 Hz. This filter
might be good enough, but there are peaks in the stopbands that are
around –20 dB. If the signal had many components at these peak values
at any time, a false reading of the relative magnitude might be obtained.

180

gain

1

Ω
0.236 0.471 2π

f, Hz750 1500 20 k

Figure 11.11. Ideal BPF graphical specification for Application 2

Digital Signal Processing

To reduce this ripple in the stopbands, let’s add windowing, which will
further widen the transition regions but reduce the peaks of the ripple.

Example 10.4 is further modified by adding Hamming windowing as given
in Equation 11.3. Figure 11.13 is a plot of the resulting gain in dB for
N = 10 using Hamming windowing. As can be seen, the transition region
widening is too great, so more coefficients are needed. By changing N to
15, we get the plot in Figure 11.14, which has better passband and
stopband regions. The Mathcad program that plotted Figure 11.12 is run
again with N = 15 to see if windowing is still needed if the N value is
increased from 10 to 15. The gain plot in dB is shown in Figure 11.15,
which shows little improvement in the ripple in the stopbands. Thus the
Hamming windowed coefficients with N = 15 (31 coefficients) are used

Figure 11-12. FIR lowpass filter gain for N = 10 for Application 2

181

Figure 11.13. FIR lowpass filter gain for N = 10 for Application 2 with Ham-
ming window

Windows for FIR Filters

to implement the bandpass filter. The peaks of the ripple are less than
–40 dB, so that even if significant signal amplitudes existed at these
frequencies, their sum would not significantly change the RMS value. The
widened bandwidth will include the effects of some signal amplitudes at
frequencies beyond the desired passband, but it is better that the RMS
value will be modified by the amplitudes of signal components near the
center frequency than by those far from it.

In the following difference equation only a few windowed coefficients
are shown since the FIR filter uses thirty-one coefficients. These
coefficients can be obtained by simply typing ah[n= at the bottom
of the modified Example 10.4 Mathcad program. This application
example was used to show the implementation of an FIR filter in a
simple application where the linear phase shift of the FIR filter is

Figure 11.14. FIR lowpass filter gain for N = 10 for Application 2 with Ham-
ming window

182

Figure 11.15. FIR lowpass filter gain for N = 15 for Application 2

Digital Signal Processing

not needed. In a more sophisticated application of bandpass filtering,
such as recombining the signals in each filtered band after a desired
gain change is applied to each band, the nonlinear phase effects can
cause significant audio effects that are not intended. Remember, a
linear phase delay just means that all sinusoidal signal components
are delayed the same amount in the time domain.

y(n) = 0.0019x(n + 15) + ⋅ ⋅ ⋅ + 0.075x(n) + ⋅ ⋅ ⋅ + 0.0019x(n − 15)

Finally, since the value displayed is the result of a current incoming signal
whose RMS value of about 1 kHz is to be displayed, the causal form of the
filter difference equation is needed, as shown next. A similar difference
equation could be coded and used to replace the IIR filter difference
equation in Application 1 in Chapter 7, as well as the equations to
initialize and save previous input samples.

y(n) = 0.0019x(n) + ⋅ ⋅ ⋅ + 0.075x(n − 15) + ⋅ ⋅ ⋅ 0.0019x(n − 30)

 Summary

This chapter has introduced the practical consideration of the effect of
using only 2N + 1 coefficients for an FIR filter, where N is the biggest
positive subscript. For the ideal filter specifications, the jump at the
passband edges leads to the Gibbs effect, which is a ripple in the passband
and stopbands that approaches the jump frequency as N increases, but
never goes away. This was shown in Figure 11.1. One solution is to
decrease the magnitude of the coefficients as their subscripts approach
N or –N . This approach is called windowing, and it reduces the ripple
due to the jump from a passband gain of 1 to the stopband gain of 0. The
price paid for this reduction is an increase in the transition bandwidth.

There are many different windowing methods; only a few were discussed
in this chapter. The simplest computationally is the Bartlett window, which
is just a linear reduction of the coefficients as their subscripts move away
from zero. More-complex windowing schemes are the von Hann and the
Hamming windows. They lead to a greater reduction in the ripple than
the Bartlett for the same number of coefficients. Figures 11.4, 11.6, and
11.7 show the effects of these windowing schemes on the same lowpass
FIR filter used in Figure 11.1, where N = 20 for all cases. Also, these last
figures are repeated with the gain in dB in Figures 11.8a, 11.8b, and 11.8c.
Plotting gain in dB better shows the ripple reduction in the stopband.

183

Windows for FIR Filters

There are other ways to reduce the Gibbs effect. One is not to use ideal
filter specifications to compute the FIR coefficients; that is, specify a finite
width transition region. Figure 11.9 shows one example of this approach
for the FIR filter in Figure 11.1. Another method is not to use the FIR
filter coefficient equation developed in Chapter 10 at all. The Parks-Mc-
Clellan method mathematically finds the coefficients that would yield the
minimum amplitude of the ripple if it were evenly distributed throughout
the passband and stopband. The solution is a minimax problem that uses
the Remez exchange procedure, which is beyond the scope of this text.
However, Figure 11.10 shows the results of using the Parks-McClellan
method on the lowpass filter with N = 20 that was plotted in Figure 11.1.
The equal ripple of this method is sometimes preferred, but it does not
always produce the lowest ripple overall.

 Self-Test

1. Compute the noncausal Bartlett window coefficient for the noncausal
a3 FIR coefficient where the maximum positive subscript of the filter
is N = 10.

2. Compute the noncausal von Hann window coefficient for the non-
causal a–5 FIR coefficient where the maximum positive subscript of the
filter is N = 20.

3. Compute the noncausal Hamming window coefficient for the non-
causal a10 FIR coefficient where the maximum positive subscript of the
filter is N = 15.

4. Compute the causal Bartlett window coefficient for the causal a7 FIR
coefficient where the maximum positive causal subscript is 2N = 10.

5. Compute the causal von Hann window coefficient for the causal a1 FIR
coefficient where the maximum positive causal subscript is 2N = 8.

6. Compute the causal Hamming window coefficient for the causal a9 FIR
coefficient where the maximum positive causal subscript is 2N = 18.

7. Use Mathcad to compute the nine noncausal Bartlett window coeffi-
cients for N = 4.

184

Digital Signal Processing

8. Use Mathcad to compute the eleven noncausal von Hann window
coefficients for N = 5.

9. Use Mathcad to compute the fifteen noncausal Hamming window
coefficients for N = 7.

 Problems

1. Compute the noncausal Bartlett window coefficients for the noncausal
a–2 FIR coefficient where the maximum positive subscript of the filter
is N = 5.

2. Compute the noncausal von Hann window coefficient for the non-
causal a3 FIR coefficient where the maximum subscript of the filter is
N = 10.

3. Compute the noncausal Hamming window coefficient for the non-
causal a5 FIR coefficient where the maximum positive subscript of the
filter is N = 7.

4. Compute the causal Bartlett window coefficient for the causal a4 FIR
coefficient where the maximum positive subscript is 2N = 12.

5. Compute the causal von Hann window coefficient for the causal a7 FIR
coefficient where the maximum positive causal subscript is 2N = 10.

6. Compute the causal Hamming window coefficient for the causal a2 FIR
coefficient where the maximum positive causal subscript is 2N = 16.

 Answers to Self-Test

1. k3 = 0.7

2. k–5 = 0.854

3. k10 = 0.310

4. k7 (causal) = 0.6

185

Windows for FIR Filters

5. k1 (causal) = 0.146

6. k9 (causal) = 1

7. k4 = 0.0, k–2 = 0.5, k0 = 1

8. k–5 = 0.0, k–3 = 0.345, k0 = 1.0

9. k–7 = 0.08, k–4 = 0.438, k0 = 1.0

186

Digital Signal Processing

Practical Digital F ilter Co ns iderat ions

 Introduction

This chapter covers some of the practical problems and solutions related
to implementing digital filters. The first consideration in using a digital
filter is to decide whether an IIR or an FIR filter is to be used. Because of
their distinct characteristics, each is used almost exclusively in certain
sections of the industry. In this chapter we briefly discuss the advantages
and disadvantages of each type of filter and show why certain segments
of the industry prefer each type.

In order to reduce the effects of numerical quantization, digital IIR filters
of any order are usually implemented as combinations of first- and
second-order types. These first- and second-order filters may be combined
in parallel or in series. Also, for IIR filters, a filter of any order can be
mathematically manipulated into a form requiring fewer steps and less
memory; the simplest form is called the canonical form.

In Chapter 9 we discussed the effect of numerical quantization of the filter
coefficients on the resulting filter, but the numerical quantization of the
signal needs to be considered here. This leads to the determination of
the number of bits used by the ADC and the DAC. Finally, the choice
between encoding the samples as fixed point or floating point numbers
is discussed, and the basic effects of either choice are pointed out.

Practical Digital Filter Considerations

 c h a p t e r 12

187

 12.1 FIR versus IIR Digital Filters

The choice of using either an IIR or an FIR filter affects almost all the
other design criteria. Many segments of the industry use either one or the
other exclusively, which may make the choice easier, but the designer
needs to know what advantages or disadvantages have been given up.
Also, some filter applications may be solved by either type, and then the
following items must be taken into account at the outset.

The major difference between an FIR and an IIR filter is that the first uses
only the a coefficients, while the latter uses both a and b coefficients. On
the surface then, an FIR may seem like an obvious choice for simplicity
of design and implementation. But you pay a price for using only the a
coefficients. You usually don’t get something for nothing, which holds
true here. By selecting an FIR filter using only the a coefficients, you
usually require many more coefficients than the corresponding IIR filter,
if there is a corresponding IIR filter. This can be seen in Figures 12.1,
12.2, 12.3, and 12.4.

Figure 12.1 shows the gain plot of an FIR lowpass filter with wp = 50 rad/s
and the sampling period T = 0.01 seconds. This gives Ωp = 0.5. The FIR
filter coefficients are computed using Equations 10.4a and 10.4b, where
the number of coefficients used is 9, or N = 4. Figure 12.2 is the gain plot
of an IIR Butterworth filter developed using the BLT method to meet the
specifications of the FIR filter in Figure 12.1, which is down 3 dB at 39
rad/s and below –18dB at 75 rad/s. This IIR filter uses seven coefficients
to meet the same specifications, which does not seem like much of a
reduction in coefficients. The transfer function for this IIR filter is given
in the following equation.

188

Figure 12.1. FIR lowpass filter gain for N = 4

Digital Signal Processing

H(z) =
0.005032(z + 1)3

(z − 0.6736)[(z − 0.7801)2 + 0.27392]

However, let’s tighten the specifications a little more. From Figure 12.2
we can see that the IIR filter actually has no stopband ripple, since it is a
Butterworth filter. Let’s require the FIR filter to have stopband ripple
below –40 dB. Figure 12.3 shows the rectangular windowed (this really
means no windowing) FIR lowpass filter with N = 20, or 41 coefficients.
It is seen that even using forty-one coefficients the requirement that the

189

00

Frequency (rad/sec)

0

–20

–40

–60

–80

–100

–120
100 101 102 103

G
ai

n
(d

B
)

Figure 12.2 IIR Butterworth filter gain using BLT method

Figure 12.3. FIR lowpass filter gain for N = 20

Practical Digital Filter Considerations

stopband ripple be under –40 dB can’t be met. Using the Hamming
window coefficients on the lowpass filter coefficients with N = 6, or 13
windowed coefficients, gives the gain plot in dB in Figure 12.4. Measure-
ments from Figure 12.4 show that the gain is –3 dB at 27 rad/s and
reduces below –40 dB above 130 rad/s. This is approximately what the
IIR butterworth filter gain does in Figure 12.2, but now thirteen
coefficients are used instead of seven for the gain shown in Figure 12.2.

The increase in the number of coefficients from using an FIR filter
instead of an IIR filter means that more memory and computations are
required; the computations reduce the maximum sampling period T that
can be used. Also the use of more a coefficients, three for the IIR filter
in Figure 12.2 and thirteen for the FIR filter plotted in Figure 12.4, means
a longer delay between input and output, since you can’t compute any
output until all the required input samples have been obtained. This
delay is not usually critical, unless real-time digital signal processing is
required. For real-time signal processing this extra delay caused by the
FIR filter can be very significant.

The preceding discussion about time delay brings up an advantage of
using an FIR filter. This advantage is that there is no phase shift for a
noncausal FIR filter using the integral equation in Chapter 10 and a linear
phase delay for a causal FIR filter (one used for real-time processing).
This is because the development of the integral equation in Chapter 10
used the magnitude only in its derivation; thus the phase shift was
assumed to be zero. In order to process in real time, the noncausal
coefficients must be converted to the causal coefficients. Remember, this
is just a renaming so that the computation can proceed; it really amounts
to delaying the output until the required input samples are available.

190

Figure 12.4. Hamming windowed FIR lowpass filter gain for N = 6

Digital Signal Processing

Students can recall from AC circuits class that a delay is a linear phase
shift of all the frequencies in the signal. However, since the IIR filter is an
approximation to an analog filter, the phase shift of the filter is not
controllable. Students should recall from analog signal processing classes
that a first-order factor goes through a 90-degree phase shift, and
second-order filters go through 180 degrees of phase shift.

Besides being able to be designed with linear phase shift, or a constant
delay without distortion, FIR filters also have no stability problems.
Remember, there are no b coefficients and thus no denominator terms
in the transfer function, T (z), of FIR filters. This is shown in the following
expression, where Equation 10.2 is now given as Equation 12.1.

T (z) = a0 + a1z
−1 + ⋅ ⋅ ⋅ + aNz−N + a−1z + ⋅ ⋅ ⋅ + zNa−N (Equation 12.1)

Since Equation 12.1 shows that there are no poles of T (z), it is impossible
to design an unstable FIR filter or to cause instability by using too low a
coefficient precision. Sometimes this stability property, along with the
linear phase shift produced by FIR filters, is more important than the
effects of usually using more coefficients than IIR filters. The filter
designer must be aware of these effects and make the choice based on
the applications and specifications required.

 12.2 Effects of Analog to Digital Converter Number of Bits

The number of bits used to convert the analog signal to a sampled time
signal affects the Signal to Noise Ratio or SNR of the signal sent into the
filter. The SNR is the ratio of the signal amplitude to the unwanted signal
or noise amplitude introduced into the signal by using a limited number
of bits to represent the sampled signal amplitude. The SNR is usually
expressed in dB, just as the gain of the filter is, which is another ratio.
The noise in the SNR is called quantization noise, because the limited
number of bits quantizes the sampled signal into discrete magnitude
values. This effect is shown in Figure 12.5.

In order to quantitatively determine the SNR in terms of the number of
ADC bits used, the mathematics of stochastic processes would have to be
used. But we will present here a logical derivation of the relationship that
agrees with the results of using the mathematics of stochastic processes.
The following steps should allow the student to more fully understand the

191

Practical Digital Filter Considerations

relationship between input noise and the number of ADC bits used, as
well as to modify the results to their special cases.

Let’s first look at the best we can do to represent an analog signal
into an ADC using only one bit. Let us restrict the signal so that its
amplitude varies between 0 and 1. A low signal level will be represented
with a 0 value and a high level with a 1. If the one-bit ADC symmetrically
rounds the sampled value of the analog signal, then any sample of
the input signal over 0.5 would be represented by the ADC with a
1, and lower signal levels with a 0. This is shown in Figure 12.6,
where the maximum error would be 0.5, with linearly decreasing
errors for other sample values.

Now the maximum error to the one-bit ADC is 0.5 for a signal that
has values between 0 and 1. But statistically that maximum error is
not reached too often. The method used to statistically represent the
quantization error is to find the one sigma or standard deviation of
the error. The mathematics is a little beyond the scope of this text,
since the error is uniformly distributed instead of having a Gaussian
distribution, as can be seen from Figure 12.6. In Figure 12.6, if any
signal value is equally likely, then any error is equally likely; this is
called a unif orm distribution. Using the methods of stochastic processes,
the standard deviation of a uniformly distributed error is twice the
maximum error divided by the square root of twelve. This equation
is given by Equation 12.2.

192

001

010

011

100

101

110

111

time

value

T 2T 3T 4T 5T 6T 7T 8T

Figure 12.5. Quantized sample values of a signal using unsigned magni-
tude with three bits

Digital Signal Processing

σ =
2 ∗ max_error

√12
(Equation 12.2)

The one sigma error given by Equation 12.2 is 0.289 or –10.8 dB.
This seems reasonable when looking at Figure 12.6. There the expected
error would be between 0 and 0.5.

Now let’s look at a reasonable statistical representation of the signal.
We have said that it varies between 0 and 1 in value, so any sample
of it by the one-bit ADC can be any value in between. A reasonable
expected value would be 0.5 or –6 dB. Taking the ratio of the two
statistical representations gives a crude SNR of a one-bit ADC. This
ratio is 1.74 or 4.8 dB, where the SNR in dB is just the signal in
dB minus the noise in dB.

Let’s consider the effect of using more than one bit for the ADC.
From Figure 12.7 it can be seen that using 2 bits to quantify the
sampled input signal reduces the maximum error to 0.25 or half the
error of a one-bit ADC. All the other quantization errors besides the
maximum are also reduced by the same amount. Thus, it is reasonable,
that every bit added to an ADC reduces the quantization noise by
half or –6 dB. This gives the final quantization noise or error due
to using B number of bits in an ADC as Equation 12.3, where σ,
the one sigma value of the SNR, is in dB.

σ = 6(B − 1) + 4.8 (Equation 12.3)

193

analog input

2 bit ADC output

output with no error
0.5

1.0

0.5 1.0

Figure 12.6. Magnitude of quantization and error using one bit

Practical Digital Filter Considerations

Example 12.1. Computing the SNR for an 8 bit ADC

Problem: Let the ADC that is sampling the input signal into a digital filter use
eight bits to represent the value of the sampled signal at each sample time.

Solution: The number of bits is B = 8. Using Equation 12.3, the SNR = 46.8 dB.

 12.3 Fixed Point Math versus Floating Point for a DSP Chip

General purpose computers and microprocessors do their numerical
calculations using floating point 2’s complement arithmetic. In other
words, the numbers consist of a fractional part called the mantissa and
an exponential part, each coded in 2’s complement arithmetic. The
exponential part just tells how many places to the right or left the binary
digit should be shifted for the fractional part to represent the true value
represented. Thus the number of bits representing the precision of the
value represented does not change. This is called the floating point
number representation. This scheme maintains the same precision for
any value coded by the number, but the scaling by the exponent requires
extra time when two numbers are added, subtracted, multiplied, or
divided. It is easier just to eliminate the exponent and use all the bits to
represent the number. This is called fixed point number representation.
However, this limits the range of values that the number can represent,
since the binary point is fixed. Because of the increase in speed using this
fixed point representation, many DSP chips use fixed point arithmetic.
Examples 12.2 and 12.3 give the limits of the values that can be
represented by fixed point and floating point numbers using six bits.

194

analog input

2 bit ADC output

output with no error
0.5

1.0

0.5 1.0

Figure 12.7. Magnitude quantization and error using two bits

Digital Signal Processing

Example 12.2. Computing the range of values represented by a
fixed point number

Problem: Let the number of bits used be 6, and let the binary numbers be
represented by 2’s complement arithmetic.

Solution: The maximum positive number is binary 011111, which is
decimal 31, since each bit position represents a multiplication of the
number in the position by 2 as one goes left. The left-most bit just says
the number is positive. The minimum negative number is binary 111111,
which is decimal –32, since the magnitude of the number is given by
inverting all the bits and adding 1. The smallest nonzero numbers
represented are 1 and –1.

Example 12.3. Computing the range of values represented by a
floating point number

Problem: Let any value be encoded using three bits for a fractional part in 2’s
complement form with the exponent using three bits in unsigned form.

Solution: In fractional form each bit position to the right of the sign bit is
half of the preceding bit, with the first bit to the right of the sign bit repre-
senting one half. Thus the fractional part ranges from 0.75 to –1 in steps of
0.25. However, the exponent tells how many bit positions to the right to
move the binary point, which for three bits in unsigned form can range
between 0 and 7. Thus the maximum range of values represented goes from
–128 to 96, with the smallest nonzero values still being –1 and 1.

From Examples 12.2 and 12.3 it is seen that a wider range of numbers
can be represented using floating point numbers with the smallest
numbers still the same. This is true in general for floating point numbers
and is the reason they are used almost exclusively in general-purpose
computers and microprocessors. However, floating point computation
takes longer since when adding, subtracting, multiplying or dividing,
more steps are needed to put the result in the form of a fractional
mantissa and compute the correct exponent for the fractional mantissa.
Thus when speed is paramount, DSP chips use fixed point numbers.
However, with a smaller range of values represented, care must be taken
to avoid numeric overflow when mathematical operations are performed.
Great care must be taken so that when overflow occurs, the maximum
value is held and rollover does not occur.

195

Practical Digital Filter Considerations

 12.4 Realization Forms for Filters

The difference equations representing IIR filters can be manipulated
to represent the filter using various mathematical operations giving
the same result. This gives different realizations of IIR filters when
they are coded. Four different realizations are given in this section,
the first being the direct form using the standard notation for a
recursive difference equation. However, some simple mathematical
manipulation gives the canonical form, which uses less storage of
previous values. Finally, the denominator of the transfer function for
IIR filters is usually factored into first- and second-order factors to
reduce the effect of numerical precision on the filter. The IIR filter
transfer function can then be written as a product of numerator
factors over denominator factors, or the transfer function can be
written as a partial fraction expansion as given in any analog signal
processing course or algebra course. Each of these product terms or
sum terms can be in direct or canonical form.

The Direct Form of the IIR Filter

The direct form of the IIR filter is obtained by coding the difference
equation directly as it is usually written, as shown in Equation 5.2.
Equation 5.2 is repeated here as Equation 12.4.

y(n) = a0x(n) + a1x(n − 1) + ⋅ ⋅ ⋅ + aNx(n − N)

+ b1y(n − 1) + b2y(n − 2) + ⋅ ⋅ ⋅ + bMy(n − M) (Equation 12.4)

Using Equation 12.4, the graphical representation of the direct form
realization is given in Figure 12.8 for M = 2 and N = 3. Figure 12.8
is written using the z-transform of the signals so that the transfer
function for a time delay of one sample period, z–1, can be used.
The symbols for the inverse z-transforms of the input and output are
written below their z-transforms. It is easy to see that the output
signal in Figure 12.8 is given by Equation 12.4. Figure 12.8 shows
that the direct form of coding an IIR filter with M = 2 and N = 3
requires five delays, six multiplies, and five summations. The delays
are done by storing the values in some type of computer or DSP
memory for use one cycle later. Now let’s look at this same IIR filter
using the canonical form for coding.

196

Digital Signal Processing

The Canonical Form of the IIR Filter

The canonical form or realization is coded using Equations 12.5a and
12.5b.

Y(z) = W(z) ∑
k=0

N

akz
−k (Equation 12.5a)

W(z) = X (z) + W(z) ∑
k=1

M

bkz
−k (Equation 12.5b)

It is shown next that Equations 12.5a and 12.5b give the z-transform of
Equation 12.4. The mathematical steps for this start by using Equation
12.5b. The purpose for introducing the signal W(z) will be shown by
looking at the graphical representation in Figure 12.9.

W(z) − W(z) ∑
k=1

M

bkz
−k = X (z)

W(z) ∗

1 − ∑

k=1

M

bkz
−k

 = X (z)

197

Figure 12.8. Direct realization of an IIR filter with four a coefficients and
two b coefficients

− − −

− −

Practical Digital Filter Considerations

W(z) =
X (z)

1 − ∑
k=1

M

bkz
−k

Y(z) =

X (z)

1 − ∑
k=1

M

bkz
−k

 ∗ ∑
k=0

N

akz
−k

Y(z)

1 − ∑

k=1

M

bkz
−k

 = X (z) ∗ ∑

k=0

N

akz
−k

Y(z) = Y(z) ∑
k=1

M

bkz
−k + X (z) ∑

k=0

N

akz
−k

Y(z) = ∑
k=1

M

bkz
−kY(z) + ∑

k=0

N

akz
−kX (z)

Taking the inverse z-transform of the last equation using the shifting
property gives Equation 12.4. Now let’s look at the graphical representa-
tion of a digital IIR filter coded using Equations 12.5a and 12.5b with M
= 2 and N = 3. This is shown in Figure 12.9. Figure 12.9 shows that the
IIR filter with M = 3 and N = 2 coded using the canonical realization uses
three delays, six multiplies, and five additions. Compared with the direct

198

+

+

+

+

+

z

z

z

a

a

a

a

b

b

X(z)

x(n)

Y(z)

y(n)

W(z)

−

−

−

Figure 12.9. Canonical realization of an IIR filter with four a coefficients
and two b coefficients

Digital Signal Processing

form of realization, the canonical form uses less delays. The delays are
memory locations, since a value is delayed by storing it and using the value
in the next computer or DSP cycle.

The Cascade Form of the IIR Filter

As previously shown, the IIR filter can be realized or coded in direct form
or canonical form. This is taken even further by factoring the numerator
and denominator of the transfer function T (z) of the IIR filter into first-
and second-order factors. Then T (z) could be written as a product of
terms with first- and second-order numerators and denominators. This is
usually done, since it contributes to numerical stability. A simple example
is a pole or denominator factor of (z – 0.987); no amount of truncation
or rounding will cause the pole to have a magnitude greater than one,
which would make the entire filter unstable. However if several poles are
multiplied together to form the denominator, numerical truncation or
rounding of the coefficients of the resulting polynomial in z could
produce a pole magnitude greater than one. The terms are usually then
written in the canonical first- or second-order form. These terms are then
each converted to difference equations using the shifting property, and
each difference equation is then coded. This cascade form is illustrated
in Example 12.4.

Example 12.4. Determining the cascade form using direct form
terms

Problem: Given the factored transfer function T (z) of an IIR filter below,
determine a cascade form each written as a first- or second-order direct
form.

T (z) =
0.8(z − 1)(z + 0.9)(z − 0.9)
(z + 0.8)(z2 − 1.2z + 0.85)

Solution: One solution would be to group the numerator and denomina-
tor factor as shown in the following equation, and then determine the
corresponding difference equations as shown.

T (z) =

0.8(z − 1)

z + 0.8

z2 − 0.81
z2 − 1.2z + 0.85

199

Practical Digital Filter Considerations

Let’s call the first term on the right T 1(z) and the second term T 2(z). Then
the overall filter transfer function could be implemented by coding the
following two equations, which are obtained in the usual way from T 1(z)
and T 2(z). If the cascade filter is implemented with the term representing
T 1(z) before the other term, then x1(n) is really the overall input x(n),
y2(n) is the overall output y(n), and the output of the first filter y1(n) is
the input to the second filter x2(n). This leads to the last two equations,
which would then be coded to give a cascade form of the original filter.

y1(n) = −0.8y1(n − 1) + 0.8x1(n) − 0.8x1(n − 1)

y2(n) = 1.2y2(n − 1) − 0.85y2(n − 2) + x2(n) − 0.81x2(n − 2)

Or:

y1(n) = −0.8y1(n − 1) + 0.8x(n) − 0.8x(− 1)

y(n) = 1.2y(n − 1) − 0.85y(n − 2) + y1(n) − 0.81y1(n − 2)

The Parallel Form of the IIR Filter

If only the denominator of the transfer function of an IIR filter is factored
into first- and second-order terms, the Partial Fraction Expansion (PFE)
method from algebra can be used to write the transfer function T (z) as
a sum of terms with first- and second-order denominators. Again, by
having only first- and second-order denominators, it is less likely that
numerical truncation or rounding will cause instability. Remember that
PFE is just the inverse mathematical operation of putting a sum of rational
terms over a common denominator. However, using PFE to obtain the
original transfer function as a sum of terms is tricky for z-transforms. This
is due to the fact that the numerator order must be less than the
denominator order in order to directly use PFE. But many T (z) have the
same order numerators as denominators, so some algebraic trickery is
used, which will not be gone into here.

The Transversal Form for FIR Filters

The FIR filter is usually coded directly from the difference equation of
the FIR filter. This is called the Transversal form, since the filter

200

Digital Signal Processing

operations proceed transversely along a line in the graphical representa-
tion for the transversal form of the FIR filter. Equation 12.1 gives the
causal difference equation for an FIR filter, so it is not repeated here.
Figure 12.10 gives the graphical representation of the transversal form of
the FIR filter. Remember that an FIR filter can be causal or noncausal.

 Summary

In this chapter we have looked at some of the practical aspects of using
digital filters. The first was how to choose between IIR and FIR filters. Some
of the characteristics of each were gone over. The primary characteristics of
IIR filters is that they are digital approximations to analog filters. They will
have the same phase characteristics and stability concerns as do analog
filters. By using the integral equation in Chapter 10, FIR coefficients can be
found for any specified phase shift. In Chapter 10, the integral equation was
solved to give the coefficients for ideal gain specifications for the four basic
types of filters without any phase shift.

These algebraic solutions were for noncausal filters, which require input
samples for the current output that have not occurred yet. But this is not
a problem if the input samples are already stored in a computer. The
causal form is obtained by renaming the coefficients, which essentially
delays the output until all the input samples required are available. This
delay causes a linear phase shift with respect to the input frequency if the
noncausal filter had no phase shift. The resulting delay may be a problem
in real-time or control system applications. However, the major problem
with FIR filters is that they usually require more coefficients than an IIR
filter. This was illustrated in Figures 12.1 through 12.4.

201

0 1 2 3 4 5 6

X(z)

x(n)
z z z z z z

a a a a a a a

Y(z)

y(n)
+ + + + + +

−1 −1 −1 −1 −1 −1

Figure 12.10. The Transversal realization of a seven-coefficient causal FIR
filter

Practical Digital Filter Considerations

Another concern to the digital filter designer is the magnitude quantiza-
tion problem of the input samples due to the number of bits used in the
DAC. A simple equation, Equation 12.3, was developed to compute the
approximate standard deviation of this quantization noise in order to
determine its effect on the filter specifications.

The basic problem of using floating point numbers versus fixed point
numbers was discussed and their characteristics given. Mathematical
operations with floating point numbers are slower, but overflow or
numeric rollover is less likely than with fixed point numbers. The filter
designer must weigh these characteristics against the filter requirements
to determine which method is best.

Finally the problem of coding the filter was covered. By mathematical
manipulation the difference equations to be coded can be written in
various ways, called forms, implementations, or realizations. For IIR
filters, directly coding the difference equation led to the direct form. It
was shown that the difference equation can always be rewritten so that
less memory is required. This led to the canonical form, which is almost
always used. Higher-order IIR filter transfer functions can be factored into
product of terms, and the difference equations for each can be coded
directly or using the canonical form. By using product of terms with first-
or second-order factors, it is impossible to cause IIR filter instability due
to coefficient truncation or rounding. The transfer function of the IIR
filter could also be represented by a sum of terms using PFE, each term
also having a first- or second-order denominator. This parallel realization
was not pursued here, since special techniques are required to PFE
z-transfer functions.

 Self-Test

1. Determine the approximate SNR due to magnitude quantization when
twelve bits are used for the ADC.

2. Determine the approximate SNR due to magnitude quantization when
sixteen bits are used for the ADC.

3. Draw the diagram for the direct form of the realization for the
following digital filter transfer function, similar to that shown in Figure
12.8.

T (z) =
0.2z

z − 0.817
202

Digital Signal Processing

4. Given the following transfer function of a digital IIR filter T (z), write
the two second-order transfer functions T 1(z) and T 2(z) that could be
cascaded to have the same transfer function as T (z), and then give the
difference equations of each with each one having the same a0 value.

T (z) =
5.6415 ∗ 10−4(z + 1)(z + 1)(z + 1)(z + 1)

(z2 − 1.7171z + 0.9225)(z2 − 1.7717z + 0.8156)

5. Use the canonical form to determine the difference equations for the
following first-order transfer function.

T (z) =
z

z − 0.368

6. Write the z-transformed equations for the canonical form for the filter
with the following transfer function, and then give the corresponding
difference equations.

T (z) =
0.1277(z + 1)(z + 1)

z2 − 0.7664z + 0.2774

7. Draw the canonical realization of the filter T 1(z) in Problem 4 similar
to the realization shown in Figure 12.9.

8. Draw the canonical realization of the filter in Problem 5 similar to the
realization shown in Figure 12.9.

 Problems

1. Determine the approximate SNR due to magnitude quantization when
eight bits are used for the ADC.

2. Determine the approximate SNR due to magnitude quantization when
four bits are used for the ADC.

3. Draw the diagram for the direct form of the realization for the
following digital filter transfer function, similar to that shown in Figure
12.8.

T (z) =
0.8(z − 1)

z − 0.6
203

Practical Digital Filter Considerations

4. Given the following transfer function of a digital IIR filter T (z), write
the two first-order transfer functions T 1(z) and T 2(z) that could be
cascaded to have the same transfer function as T (z), and then give the
difference equations of each one having the same a0 value.

T (z) =
0.2097z2

(z2 − 0.75z + 0.243)(z2 − 1.03z + 0.525)

5. Use the canonical form to determine the difference equations for the
following first-order transfer function.

T (z) =
0.632

z − 0.638

6. Write the z-transformed equations for the canonical form for the filter
with the following transfer function, and then give the corresponding
difference equations.

T (z) =
0.172z

z2 − 1.32z + 0.49

7. Draw the canonical realization of the filter T 1(z) in Problem 4 similar
to the realization shown in Figure 12.9.

8. Draw the canonical realization of the filter in Problem 5 similar to the
realization shown in Figure 12.9.

 Answers to Self-Test

1. 71 dB

2. 95 dB

3. a1 = 0.2
b1 = 0.817

4.
T 1(z) =

0.02375(z + 1)(z + 1)
z2 − 1.7171z + 0.9225

T 2(z) =
0.02375(z + 1)(z + 1)
z2 − 1.7717z + 0.8156

204

Digital Signal Processing

y1(n) = 1.7171y1(n − 1) − 0.9225y1(n − 2) + 0.02375[x1(n) + 2x1(n − 1)
+ x1(n − 2)]
y2(n) = 1.7717y2(n − 1) − 0.8156y2(n − 2) + 0.02375[x2(n) + 2x2(n − 1)
+ x2(n − 2)]

5. w(n) = x(n) + 0.368w(n − 1)
y(n) = w(n)

6. Y(z) = W(z)[0.1277(1 + 2z−1 + z−2)]
W(z) = X (z) + W(z)[0.7664z−1 − 0.2774z−2]
y(n) = 0.1277[w(n) + 2w(n − 1) + w(n − 2)]
 w(n) = x(n) + 0.7664w(n − 1) − 0.2774w(n − 2)

7. a0 = 0.0237 a1 = 0.0475 a2 = 0.0237
b1 = 1.717 b2 = –0.9225

8. a1 = 1.0
b1 = 0.368

205

Practical Digital Filter Considerations

Digital In tegrat ion

 Introduction

In this chapter we take a very brief look at using the computer to perform
integration, called digital integration. This is a very complex subject,
which comprises thousands of times more material than can be discussed
here. The purpose of this chapter is to show another use for DSP besides
digital filtering and to illustrate some of the basic uses and characteristics
of digital integration. We only look at very simple digital integration, just
so the student has an idea of the subject and characteristics. The
techniques given in this chapter are not the best or even the usual
methods for digital integration, but they are useful for illustrative
purposes, since they are simple and easily understood, and are chosen for
that reason.

 13.1 Introduction to Digital Integration

There are three fundamental uses for digital integration. The first use is
to integrate a set of samples of signals or data that are all known and
stored values. In this use, Simpson’s Rule or the trapezoidal rule given in
algebra or calculus texts is used. The trapezoidal rule is given in Equation
13.1, and Simpson’s rule is in Equation 13.2.

∫
0

nT

x(t)dt ≈ T [0.5x(0) + x(1) + ⋅ ⋅ ⋅ + x(n − 1) + 0.5x(n)] (Equation 13.1)

Digital Integration

 c h a p t e r
 13

207

∫ nT

0
 x(t)dt ≈

T
3

[x(0) + 4x(1) + 2x(2) + 4x(3) + 2x(2) + ⋅ ⋅ ⋅

+ 4x(n − 1) + x(n)] (Equation 13.2)

The second use is to integrate signals or samples of signals in real time,
that is, to compute the current integral before the next input sample is
taken. This method and its requirements will be illustrated by modifica-
tion of the trapezoidal rule.

The final use of digital integration is to find the solution of differential
equations, which is of primary concern in engineering analysis and
simulation. In this chapter we will use very basic digital integration
procedures, so that the concepts can be understood. Let’s look at a simple
example of integrating known samples of data using the trapezoidal rule,
in Example 13.1.

Example 13.1. Using the trapezoidal rule to find the integral of
sampled data

Problem: Given the following uniformly sampled values of a signal, find
the area under the curve using the trapezoidal rule. The samples are
separated by T = 0.15 s.

x(0) = 0.2 x(3) = 0.3 x(6) = 0.4

x(1) = 0.4 x(4) = 0.7 x(7) = 0.3

x(2) = 0.5 x(5) = 0.6 x(8) = 0.5

Solution: Using Equation 13.1, with n = 8, we have the following equation.

y(8T) = y(8) = 0.15[0.5(0.2) + 0.4 + 0.5 + 0.3 + 0.7 + 0.6 + 0.4 + 0.3
+ 0.5(0.5)] = 0.5325

Given only the samples of the signal that is to be integrated, there is no
way to know if the trapezoidal rule gives the correct answer in Example
13.1. All that can be said is that Simpson’s rule is usually more accurate.
The most important point to be made about Example 13.1 is that only
the total area under the sampled signal at the end of the sampling is
given. In many engineering applications the integral of the current signal

208

Digital Signal Processing

is needed at each sample time, such as determining current position by
integrating the output of a tachometer. The trapezoidal rule or Simpson’s
rule could be repeated for every new input sample from the ADC, but
repetition is time-consuming. The next section shows how the trapezoidal
rule can be broken down to allow the current integral to be computed.

 13.2 Digital Integration of Known Signals

If a signal is being sent through an ADC so that digital integration can be
performed on it, Simpson’s rule or the trapezoidal rule can be simplified
so that fewer calculations are needed. Note from Equation 13.1 that the
first and last samples must be divided by 2. This is no problem for the
initial sample since once it is done, it is done. But if the signal continues
to be sampled, the last (or most current sample) value keeps changing.
So if the trapezoidal rule is used to integrate a signal continuously as
samples of it are taken, you can’t just add half of it to the previous integral,
since it used half of the previous sample value and now you need its full
value and half the current sample value. The problem is even more
complex for Simpson’s rule, given in Equation 13.2.

Let’s look at how the trapezoidal rule was developed and modify it so that
it can be used on a signal that is continuously being sampled and digitally
integrated. Figure 13.1 illustrates how the trapezoidal rule approximates
the area under a signal. In Figure 13.1, the area under the smooth curve
is y(t), and it is approximated by summing the area of all the trapezoids
whose upper vertices are on the curve. It can be seen that this sum
approximates the area under the smooth curve, especially if the time
between samples decreases. Let’s sum the trapezoidal areas to derive the
trapezoidal rule as shown in the following equations.

y(t) ≈ T
x(0) + x(1)

2
 + T

x(1) + x(2)
2

 + ⋅ ⋅ ⋅ + T
x(n − 1) + x(n)

2

y(t) ≈ T [
x(0)

2
 +

x(1)
2

 +
x(1)

2
 +

x(2)
2

 + ⋅ ⋅ ⋅ +
x(n − 2)

z
 +

x(n − 1)
2

 +
x(n − 1)

2

 +
x(n)

2
]

y(t) ≈ T [0.5x(0) + x(1) + ⋅ ⋅ ⋅ + x(n − 1) + 0.5x(n)]

209

Digital Integration

The last equation is the trapezoidal rule. From the derivation, it can be
seen that the rule can be rewritten as shown in Equation 13.3 to give the
trapezoidal digital integration method.

y(t) ≈ T [
x(0) + x(1)

2
 +

x(1) + x(2)
2

 + ⋅ ⋅ ⋅ +
x(n − 2) + x(n − 1)

2
]

+ T
x(n − 1) + x(n)

2

y(nT) ≈ y[n − 1)T] + T x(n − 1) + x(n)
2

(Equation 13.3)

From this last equation, it can be seen that digital integration can be done
continuously on a signal as samples of the signal are received from an
ADC by just adding half of the sum of the two most current samples
multiplied by the sampling period.

Equation 13.3 is a difference equation, which has a z-transform, as shown
in the following equation.

Y(z) = z−1Y(z) +
T
2

[X (z) + z−1X (z)]

The z-transfer function can be easily obtained from the z-transformed
equation to give the following equation.

T (z) =
Y(z)
X (z) =

T
2

z + 1
z − 1

210

t

x(t)

T 2T 3T (n-1)T nT

Figure 13.1. Illustration of the trapezoidal integration rule

Digital Signal Processing

Thus, using the trapezoidal rule for integration to find an approxi-
mation for the total area under a signal given its samples, we have
derived the difference equation and next the transfer function used
to perform the DSP process of digital integration. The same steps
could have been used on Simpson’s rule of integration (but only
computing the integral every other sample) in order to obtain another
DSP process to approximate integration, but the results would have
been more complex. Example 13.2 will use the preceding results to
perform digital integration on an exponentially decaying signal and
compare the result with the integration of the actual signal at the
sample times.

Example 13.2. Using the trapezoidal rule to perform digital
integration

Problem: Let the signal be given by 5e–10t for t > 0, with the sampling period
T = 0.02.

Solution: Using the equation for the trapezoidal rule for digital integration
gives the following equations.

y(n) = y(n − 1) +
0.02

2
[x(n) + x(n − 1)]

y(n) = y(n − 1) + 0.01[5e−0.2n + 5e−0.2(n − 1)]

y(n) = y(n − 1) + 0.01(5)[e−0.2n + e0.2e−0.2n]

y(n) = y(n − 1) + 0.05(1 + e0.2)e−0.2n

y(n) = y(n − 1) + 0.11107e−0.2n (for n > 0)

Coding and running this equation in a loop should give a good
approximation to the actual integration of the analog signal. Note
that for computational convenience the last equation was obtained;
but for doing actual DSP integration, the difference equation that
was started with would be used, since the actual signal would not be
known.

The following table compares the results of using the trapezoidal rule in
DSP form versus the actual integral of the analog signal.

211

Digital Integration

TIME DSP INTEGRATION ANALOG INTEGRATION

0.00 0.00 0.00
0.02 0.09094 0.09063
0.04 0.16539 0.16484
0.06 0.22635 0.22559
0.08 0.27625 0.27534
0.10 0.31711 0.31606

By comparing the values at the sample times in the last two columns, it
can be seen that the DSP version of the trapezoidal rule does a fairly
accurate job of finding the area under a decaying exponential signal at
every sample time and over one time constant at least.

Now let’s look at an even simpler digital integration method called rectan-
gular or Euler integration. The graphical representation of the rectangular
integration method is shown in Figure 13.2. In Example 13.3, we will show
that, in general, it is not as good as trapezoidal integration, but it is one of
the most widely used digital integration methods used in real-time control
systems and digital simulation. The reason will be shown in Section 13.3.
Rectangular integration is discussed in Chapter 1, where its unmodified
difference equation was given as the following equation.

y = y−1 + T x−1

Modifying this difference equation into the more standard notation, as
was shown in Chapter 5, gives the difference equation as Equation 13.4.

y(n) = y(n − 1) + T x(n − 1) (Equation 13.4)

212

x(t)

t
T 2T 3T 4T 5T 6T 7T 8T 9T 10T

Figure 13.2. Illustration of the rectangular integration method (with quantiza-
tion error)

Digital Signal Processing

This difference equation is the standard equation for rectangular integra-
tion. Instead of averaging the two most current input signal samples, it uses
just the previous sample of the input signal. In other words, it assumes the
input signal is constant between samples, whereas the trapezoidal rule as-
sumes the signal is a straight line with constant slope between samples, as
seen in Figure 13.1. The rectangular method should not be as good as the
trapezoidal rule for integration of known signals, unless of course the signal
really is a constant value between samples. In Example 13.3, we will use
rectangular integration to integrate the same signal as that for trapezoidal
integration in Example 13.2, so that the methods can be compared.

Example 13.3. Using rectangular integration to perform digital
integration

Problem: Integrate the signal 5e–10t, t > 0 with the sampling period T = 0.02
using rectangular integration.

Solution: Using Equation 13.4 for rectangular integration gives the
following equations.

y(n) = y(n − 1) + T x(n − 1)

y(n) = y(n − 1) + T (5e−10(n − 1)T)

y(n) = y(n − 1) + 0.02[5e−0.2(n − 1)]

y(n) = y(n − 1) + 0.12214e−0.2n (for n > 0)

The results of using the last equation are given in the RECT. column in
the following table.

TIME RECT.

0.00 0.0000
0.02 0.100
0.04 0.1819
0.06 0.2489
0.08 0.3038
0.10 0.3487

Comparing the results of Example 13.3 with the results using trapezoidal
integration in Example 13.2 shows that rectangular integration gives

213

Digital Integration

less-accurate results. The only way to improve the accuracy would be to
use a shorter sampling period T . Thus, from these last two examples, it
would appear that trapezoidal integration is more efficient than rectan-
gular, which is generally the case. Usually several times the sampling
frequency and computation rate is required to be used for rectangular
integration as opposed to trapezoidal integration. However, we will see in
Section 13.3 that rectangular integration is preferred in some cases when
digital integration is used to solve differential equations.

 13.3 Digital Integration for Differential Equation Solution

In the last section it seems like it was fairly easy to convert the standard
rule for trapezoidal integration into a difference equation (recursive) that
could perform digital integration on a sampled continuous time signal to
give the approximate integral at every sample time. This is very useful
when an incoming signal needs to be integrated, such as the output of
an inertial accelerometer in order to get the velocity. However, in
engineering, one of the most powerful uses of digital integration is in
solving differential equations.

Using digital integration to solve even first-order differential equations
can lead to strange requirements that can’t be met. This is shown again
here by starting with a first-order differential equation and then integrat-
ing both sides.

dy(t)
dt

 + by(t) = ax(t)

∫ dy(t)
dt0

t

dt + ∫
0

t

by(t)dt = ∫
0

t

ax(t)dt

Cancelling the dt in the numerator and denominator of the leftmost
integral and using the definition of integration as anti-differentiation give
the following equations.

y(t) − y(0) + b ∫
0

t

y(t)dt = a ∫
0

t

x(t)dt

y(t) = y(0) − b ∫
0

t

y(t)dt + a ∫
0

t

x(t)dt

214

Digital Signal Processing

As can be seen from the last equation, there is a problem here that would
not exist if analog integrators were being used (these are just op amps
with capacitors in the negative feedback path). The last equation requires
the answer to be used to get the answer. In a computer or DSP chip it will
take at least one more computer cycle to use the output in the first
integral equation on the right.

The easiest and most obvious solution is to use the previously computed
output, but even this brings up another problem, which will be illustrated
by the following equations using the trapezoidal digital integration
method for both integrals on the right of Equation 13.5.

y(t) = y(0) − b ∫
0

t

y(t)dt + a ∫
0

t

x(t)dt

∫
0

t

y(t)dt ≈ w(n) = w(n − 1) +
T
2

[y(n − 1) + y(n − 2)]

∫
0

t

x(t)dt ≈ v(n) = v(n − 1) +
T
2

[x(n) − x(n + 1)]

y(n) = y(0) − bw(n) + av(n) (Equation 13.5)

In the last equation, w is just the discrete integral of the variable y, and v
is just the discrete integral of the variable x. The important item to notice
is that using the trapezoidal rule for digital integration has resulted in
using older information in the solution for y(n) in the last equation. It
was necessary to use the previous value of y(n) for y(n) since y(n) does
not exist yet, but we have also used the value of y(n) before that, that is,
y(n – 2). Using older and older data in recursive equations, which by
definition the last equation is, can be very dangerous. This is illustrated
in Example 13.4, where trapezoidal integration is used to solve for the
output of a first-order differential equation, and then one of the integrals
is computed using rectangular integration. Since the output of a first-
order linear time-invariant ordinary differential equation is computed, its
exact solution is also derived, and the results compared to it.

Example 13.4. Solving a first-order differential equation using
digital integration

Problem: Let it be required to compute the output y(t) of the following

215

Digital Integration

first-order differential equation using digital integration with the sam-
pling period T = 0.02 for a unit step input and no initial conditions.

dy(t)
dt

 + 5y(t) = x(t)

Solution: Since this is a simple first-order differential equation, let’s first
find its solution using Laplace transforms from the student’s analog signal
processing course. The following equations show the steps and final
algebraic solution, where Y(s) and X(s) are the Laplace transforms for
y(t) and x(t).

sY(s) + 5Y(s) = X(s)

Y(s)[s + 5] =
1
s

Y(s) =
1

s(s + 5)

Y(s) =
0.2
s

 +
−0.2
s + 5

y(t) = 0.2[1 − e−5t], t ≥ 0

The results of solving this algebraic equation at the sample times is given
in the TRUE column in Table 13.1. Now let’s use digital integration to
compute y(t), using trapezoidal integration as shown in Equation 13.3
and the two equations above it (assuming no initial conditions). These
equations then become the following equations.

w(n) = w(n − 1) + 0.01[y(n − 1) + y(n − 2)]

v(n) = v(n − 1) + 0.01[x(n) + x(n − 1)]

y(n) = −5w(n) + v(n)

Computing the preceding equation recursively, where w(n) and v(n) are
just the digital integral values of y(n) and x(n) respectively, gives the
values for y(t) at the sample times in the TRAP column. Remember that
x(n) is zero for n < 0 and 1 otherwise.

216

Digital Signal Processing

Next, let’s replace the trapezoidal integration of w(n) on the right side of
Equation 13.5 with the simplest type of digital integration, rectangular
integration. This discrete integration is performed by the second equa-
tion above Equation 13.5. Now the recursive equations used to compute
y(t) at the sample times is given by the following equations for zero initial
conditions with a unit step input.

w(n) = w(n − 1) + 0.02y(n − 1)

v(n) = v(n − 1) + 0.01[x(n) + x(n − 1)]

y(n) = −5w(n) + v(n)

Computing y(n) at the sample times using the preceding equation gives
the values in the RECT/TRAP column of Table 13.1.

From Table 13.1, we see that using the simplest digital integration
method, the rectangular, produces better results than a more sophisti-
cated method, the trapezoidal. This is because when using digital
integration to solve differential equations, you end up requiring the result
to compute the result. For this case, less error usually results by using a
single previous value instead of the two previous values required by
trapezoidal integration.

217

TIME TRUE TRAP RECT/TRAP

0.00 0.000 0.000 0.000
0.02 0.019 0.020 0.020
0.04 0.036 0.039 0.038
0.06 0.052 0.056 0.054
0.08 0.066 0.071 0.069
0.10 0.079 0.085 0.082
0.12 0.090 0.097 0.094
0.14 0.101 0.108 0.104
0.16 0.110 0.118 0.114
0.18 0.119 0.126 0.123
0.20 0.126 0.134 0.130

Table 13.1
Comparison of digital integration methods for a first-order equation

Digital Integration

Example 13.4 may have given the impression that digital integration is a
very hard and laborious way to compute the solution of a differential
equation, but it is not. In Example 13.4 a simple first-order linear
equation as well as a unit step input were used so that it would be easy to
determine the true values analytically. But consider if the differential
equation were a higher-order one with a nonconstant input. Then the
analytical solution is very complex, but using digital integration takes just
a few more steps. If the differential equation is still first order but
nonlinear, like the equation examined in Example 13.5, there is no way
to use Laplace transforms to find a solution. But the recursive equations
using digital integration would only require a small modification to
continue to compute the solution to the equation. This will be shown in
Example 13.5. With this power, digital integration of differential equa-
tions becomes digital simulation of systems described by differential
equations!

Example 13.5. Solving a first-order nonlinear differential equation
using digital integration

Problem: Determine difference equations to solve the following nonlinear
first-order differential equation, using the Euler integration method. Let
the input x(t) be a unit step, and let all the initial conditions be zero and
the sampling period be 0.02 s.

dy(t)
dt

 + 5 cos(y) = x(t)

Solution: Equation 13.5 and the two equations above it are now modified,
using Euler integration, to solve the preceding differential equation.

w(n) = w(n − 1) + 0.02cos(y(n − 1))

v(n) = v(n − 1) + 0.02u(n − 1)

y(n) = y(0) − 5w(n) + v(n)

 Summary

In Chapter 13 we have looked at digital integration, another use for DSP.
Again we saw that difference equations resulted. Only the coefficients

218

Digital Signal Processing

determine if the difference equation represents digital filtering or digital
integration, as was stated in Chapter 1. We also looked at the digital
integration of a signal after sampling in Section 13.2. The resulting
trapezoidal method was derived from the standard mathematical texts
equation for the trapezoidal rule, which was not applicable for giving the
result after every sample. Also, a simpler digital integration method called
rectangular integration was developed, and the results were compared for
integration of a sampled signal. The comparison showed that the
trapezoidal method gave more-accurate results.

In Section 13.3 we looked at the problem of solving differential equations
by using digital integration and saw there was a basic problem. This
problem is that the calculated result is required to get the result, and one
solution is to use the previous result to compute the result. Example 13.4
showed that when this is done, rectangular integration gives better results
than the usually more accurate trapezoidal method. This illustrates why
rectangular integration is used in many cases in place of trapezoidal or
much more sophisticated methods.

Since any physical system can be described by differential equations,
which may be nonlinear or time varying, the methods of digital integra-
tion are used to compute the results at the sample times, which are not
now the sample times of an ADC, but are the simulation output times.
The simple examples and digital integration methods given here are used
for illustrative purposes only, in order to show another aspect of DSP and
some of its basic characteristics.

 Self-Test

1. Given the following sequence of samples of a signal, use rectangular
integration to determine the integral y(n) of the signal at each sample
for T = 0.05 s. All other samples of the signal are 0.0.

x(0) = 0.0, x(1) = 0.3, x(2) = 0.6, x(3) = 0.7, x(4) = 0.8, x(5) = 0.8

2. Given the sequence of samples in Problem 1, use trapezoidal integra-
tion to determine the integral of the signal at each sample up to y(4)
for T = 0.01 s. All other samples of the signal are 0.0.

3. Given the following differential equation, modify Equation 13.5

219

Digital Integration

to solve for y(n) for x(t) = u(t) with the simulation sampling period
T = 0.1 s.

dy(t)
dt

 + 2y(t) = x(t)

4. In order to compute the equation for y(n) in Problem 3, two auxiliary
equations are required. Give the auxiliary equations for trapezoidal
integration.

5. Use the results of Problem 4 to write the complete set of difference
equations necessary to solve the equations in Problem 3 in their
proper order.

6. Modify the answer for Problem 4 to use rectangular integration for
both auxiliary equations.

7. Use Mathcad to determine the integral y(t) of the following signal x(t)
for every 0.5 s from 0 to 4 s using rectangular integration.

x(t) = 0.25t

8. Use Mathcad to determine the integral y(t) of the signal in Problem
7 for every 0.5 s from 0 to 4 s using trapezoidal integration.

9. For the following differential equation, use Mathcad to solve for
y(1), using trapezoidal integration for x(t) = u(t) for a sampling
period T = 0.1 s.

dy(t)
dt

 + 3y(t) = 2x(t)

 Problems

1. Given the following sequence of samples of a signal, use rectangular
integration to determine the integral y(n) of the signal at each sample
for T = 0.1 s. All other samples of the signal are 0.0.

 x(0) = −0.1, x(1) = −0.2, x(2) = 0.3, x(3) = 0.1, x(4) = −0.3
2. Given the sequence of samples in Problem 1, use trapezoidal integra-

220

Digital Signal Processing

tion to determine the integral of the signal at each sample up to y(4)
for T = 0.2 s. All other samples of the signal are 0.0.

 x(0) = 1.2, x(1) = 1.5, x(2) = 1.8, x(3) = 1.7, x(4) = 0.5

3. Given the following differential equation, modify Equation 13.5 to
solve for y(n) for x(t) = tu(t) with the simulation sampling period
T = 0.02 s.

dy(t)
dt

 + y(t) = 2x(t)

4. In order to compute the equation for y(n) in Problem 3, two auxiliary
equations are required. Give the auxiliary equations for rectangular
integration.

5. Use the results of Problem 4 to write the complete set of difference
equations necessary to solve the equations in Problem 3 in their proper
order.

6. Modify the answer for Problem 4 to use trapezoidal integration for
both auxiliary equations.

 Answers to Self-Test

1. y(0) = 0.0, y(1) = 0.0, y(2) = 0.015, y(3) = 0.045, y(4) = 0.08, y(5) =
0.12, y(6) = 0.16 = y(7) and above.

2. y(0) = 0.0, y(1) = 0.0015, y(2) = 0.006, y(3) = 0.0125, y(4) = 0.02

3. y(n) = y(0) − 2w(n) + v(n)

4. w(n) = w(n − 1) + 0.05y(n − 1) + 0.05y(n − 2)
v(n) = v(n − 1) + 0.05u(n) + 0.05u(n − 1)

5. w(n) = w(n − 1) + 0.05y(n − 1) + 0.05y(n − 2)
v(n) = v(n − 1) + 0.05u(n) + 0.05u(n − 1)
y(n) = y(0) − 2w(n) + v(n)

6. w(n) = w(n − 1) + 0.1y(n − 1)

221

Digital Integration

v(n) = v(n − 1) + 0.1u(n − 1)

7. y (0) = 0.0, y(0.5) = 0.0, y(2) = 1.75

8. y(0) = 0.0, y(0.5) = 0.03125, y(2) = 2.00

9. 0.661

222

Digital Signal Processing

Laplace Trans form Tables

The one-sided Laplace transform F(s) of an analog signal f (t) is
defined in the following equation.

L[f (t)] = F (s) = ∫
0

∞

f (t)e−stdt

Rather than employ the preceding equation to obtain the Laplace
transforms of various signals and properties, tables like Tables A.1 and A.2
are used. Table A.1 gives all the basic signals and their corresponding
Laplace transforms, using the preceding equation. Table A.2 gives
important properties of all Laplace transforms; in fact, the last property
is the reason Laplace transforms are used. This last property will reduce
any constant-coefficient time-invariant differential equation into an alge-
braic equation in the variable s. Using Table A.1 or Partial Fraction
Expansion of the resulting expression in s, the resulting time signal for
the output can be obtained.

Table A.1 uses the time signal u(t), which is just the continuous time or
analog version of the sampled unit step u(n). The analog unit step signal
u(t) has a value of 0 for negative time and a value of 1 for nonnegative
time values. Any of the time signals in the lefthand column of Table A.1
could be multiplied by the unit step u(t) to give the same Laplace
transform in the corresponding righthand column, since the integration
over time starts at time 0 and increases.

Example A.1 shows how the equation for the Laplace transform is used
to determine the Laplace transform for the time signal that is a constant

Laplace Transform Tables

 a p p e n d i x A

223

value of A (or Au[t]). Example A.2 uses the results of Example A.1 to
determine the Laplace transform of Ae–at (or Ae–atu[t]).

Example A.1. Using the equation to determine the Laplace
transform of a step

Problem: Given the step signal Au(t), use the Laplace transform equation
to determine its Laplace transform shown in Table A.1.

Solution: The following mathematical steps show how the Laplace trans-
form equation is used to determine the corresponding Laplace transform
of the step of Au(t).

L[f (t)] = ∫
0

∞

f (t)e−stdt

L[Au(t)] = ∫
0

∞

Au(t)e−stdt

224

f (t) F(s)
Au(t) A

s
At A

s2

Ae–at A
s + a

Ate–at A

(s + a)2

Asin(wt) Aw

s2 + w2

Acos(wt) As

s2 + w2

Ae–atcos(wt) A (s + a)
(s + a)2 + w2

Ae–atsin(wt) Aw

(s + a)2 + w2

Table A.1
Some useful Laplace transform pairs

Digital Signal Processing

L[Au(t)] = A ∫
0

∞

e−stdt

L[Au(t)] = A

e−st

−s

0

∞

L[Au(t)] = A

(e−∞s

−s
) − (e−0s

−s
)

L[Au(t)] = −

A
−s

 +

0
s

 =

A
s

Example A.2. Using the Laplace equation to determine the
Laplace transform of a decaying exponential signal

Problem: The mathematical expression for a decaying exponential signal
with a value of A at t = 0 and a time constant of 1/a s, is given by the following
equation. This expression will be used in the Laplace equation to deter-
mine the corresponding Laplace transform for the following signal.

f (t) = Ae−at

Solution: The following mathematical steps show how the Laplace equa-
tion is used to obtain the Laplace transform of the given decaying
exponential signal.

L[f (t)] = ∫
0

∞

f (t)e−stdt

L[Ae−at] = ∫
0

∞

Ae−ate−stdt

L[Ae−at] = A ∫
0

∞

e−(s+a)tdt

N ote: The last integral is the same as that in Example A.1, except s is
replaced by s + a. Thus the result is the same as in Example A.1, except
that s is replaced by s + a, as shown in the following equation.

225

Laplace Transform Tables

L[Ae−at] =
A

s + a

The last property in Table A.2 includes the initial condition of the signal
f (t). Usually in analog or digital filtering the initial condition is ignored,
so the term f (0) is usually dropped. In Example A.3, the shifting property
is derived using the Laplace equation. This property is used in determin-
ing some of the characteristics of z-transforms in the text.

Example A.3. Determining the effect of a time shift of a signal on
its Laplace transform

Problem: The original time signal is f (t); if it is delayed by T s, then it is
written as f (t – T). We will use the Laplace equation to determine the
Laplace transform of the shifted time signal f (t – T) given that the
Laplace transform of the unshifted signal is F (s).

Solution: The following mathematical equations show the steps used to
derive the Laplace transform of f (t – T), where m = t – T is used and f (t)
or f (m) is assumed zero for negative arguments.

L[f (t − T)] = ∫
0

∞

f (t − T)e−stdt

L[f (t − T)] = ∫
−T

∞

f (m)e−s(m+T)dm

L[f (t − T)] = e−sT ∫
−T

∞

f (m)e−smdm

L[f (t − T)] = e−sTF (s)

226

Table A.2
Some useful Laplace transform properties

f (t) + g(t) F(s) + G(s)
Af (t) AF(s)
f (t)*g(t) ≠ F (s) ∗ G(s)
f (t – T) e–sTF(s)
df (t)

dt
sF(s) – f (0)

Digital Signal Processing

Entering a Mat hcad P rogram

Appendix B shows the procedure for writing a Mathcad program. By
following the comments on the right, the equations on the left can be
obtained. The result is the program and resulting plot given in Example
6.4. The comments also briefly give the significance of each equation.

Entering a Mathcad Program

 a p p e n d i x B

227

228

Digital Signal Processing

	Digital Signal Processing: Filtering Approach
	Ch1 Introduction to Digital Signal Processing & Digital Filtering
	Ch2 Effect of Signal Sampling
	Ch3 Digital Filter Specifications
	Ch4 z-Transforms
	Ch5 z-Transform of DSP Equation
	Ch6 Frequency Response of Digital Filters & DSP Systems
	Ch7 IIR Filter Design
	Ch8 Digital Filter & DSP Stability
	Ch9 Filter Coefficient Precision
	Ch10 FIR Filter Design
	Ch11 Windows for FIR Filters
	Ch12 Practical Digital Filter Considerations
	Ch13 Digital Integration
	AppA Laplace Transform Tables
	AppB Entering Mathcad Program

